题目链接


题目描述:

给定一个长度为\(~\)n\(~\)的字符序列\(~\)a,初始时序列中全部都是字符\(~\)L。

有\(~\)q\(~\)次修改,每次给定一个\(~\)x,做出如下变化:

\(~~\) 1. a\(_{x}\)\(~\)=\(~\)L \(\rightarrow\)a\(_{x}\)\(~\)=\(~\)R

\(~~\) 2. a\(_{x}\)\(~\)=\(~\)R \(\rightarrow\)a\(_{x}\)\(~\)=\(~\)L

对于一个只含字符 L,R 的字符串 s,若其中不存在连续的 L 和 R,则称 s 满足要求。

每次修改后,请输出当前序列 a 中最长的满足要求的连续子串的长度。


题目思路

\(~~\) 利用线段树来维护左右区间进而维护区间某一属性的最大值

\(~~\)维护区间的lmax,rmax,即以左端点开始的最大值和以右端点开始的最大值

\(~~\)这样一个区间的最大值就可以通过子区间的maxn,lmax,rmax来维护

具体措施如下:

\(~~\) 1. 当两个子区间相接的地方不能连在一起时:

\(~~~~~\) 那父区间的最大值只能由左右区间的最大值转移而来: maxn[u]\(~\)=\(~\) max(maxn[ls],maxn[rs]);

\(~~~~~\) 而父区间的lmax由左区间的lmax转移来,rmax由右区间的rmax转移来: lmax[u]\(~\)=\(~\)lmax[ls],rmax[u]\(~\)=\(~\)rmax[rs];

\(~~\) 2. 当两个子区间相接的地方能连在一起时:

\(~~~~~\) 父区间的最大值就要考虑存不存在左区间的\(~\)“rmax”\(~\)和右区间的\(~\)“lmax”\(~\)连在一起比左右区间的maxn大的情况了:

\(~~~~~~\)maxn[u]\(~\)=\(~\)max(rmax[ls]+lmax[rs],max(maxn[ls],maxn[rs]));

\(~~~~~\) 同时因为左右区间可以连接在一块,所以在转移rmax和lmax也要考虑到是否会存在连接在一起的可能:

\(~~~~~~\) if(rmax[rs]\(~\)=\(~\)整个右区间的长度):

\(~~~~~~~~~~\) rmax[u]\(~\)=\(~\)rmax[ls]\(~\)+\(~\)右区间长度;

\(~~~~~~\) if(lmax[ls]\(~\)=\(~\)整个左区间的长度):

\(~~~~~~~~~~\) lmax[u]\(~\)=\(~\)lmax[rs]\(~\)+\(~\)左区间长度;

综上所述我们就完成了线段树的维护了,根据我们的思路,这道题在维护的时候还需要同时记录每个区间的区间长度,左右边界的元素:

即len[\(~\)],pl[\(~\)],pr[\(~\)]


代码实现

# include<bits/stdc++.h>
using namespace std;
# define int long long
# define ls u<<1
# define rs u<<1|1
const int N = 2e5 + 10;
int a[N], p, n, m;
struct segtree {
int lmax[4 * N], rmax[4 * N], maxn[N << 2];
int pl[N << 2], pr[N << 2], len[N << 2];
void pushup(int u) {
lmax[u] = lmax[ls];
rmax[u] = rmax[rs];
pl[u] = pl[ls];
pr[u] = pr[rs];
maxn[u] = max(maxn[ls], maxn[rs]);
if (pr[ls] != pl[rs]) {
maxn[u] = max(maxn[u], rmax[ls] + lmax[rs]);
if (maxn[ls] == len[ls]) {
lmax[u] = len[ls] + lmax[rs];
}
if (maxn[rs] == len[rs]) {
rmax[u] = rmax[ls] + len[rs];
}
}
} void build(int u, int l, int r) {
len[u] = r - l + 1;
if (l == r) {
lmax[u] = rmax[u] = maxn[u] = 1;
pl[u] = pr[u] = 1;
len[u] = 1;
return;
}
int mid = l + r >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(u);
} void modify(int u, int l, int r, int L, int R, int c) {
if (L <= l && r <= R) {
pl[u] ^= 1;
pr[u] ^= 1;
return;
}
int mid = l + r >> 1;
if (L <= mid) modify(ls, l, mid, L, R, c);
if (mid + 1 <= R) modify(rs, mid + 1, r, L, R, c);
pushup(u);
} int query(int u, int l, int r, int L, int R) {
if (l >= L && r <= R) {
}
int mid = l + r >> 1;
if (R <= mid) return query(ls, l, mid, L, R);
else if (L > mid) return query(rs, mid + 1, r, L, R);
else return max(query(ls, l, mid, L, mid), query(rs, mid + 1, r, mid + 1, R)); }
} tr; signed main() {
cin >> n >> m;
tr.build(1, 1, n); while (m--) {
int x;
cin >> x;
tr.modify(1, 1, n, x, x, 1);
cout << max(tr.maxn[1], max(tr.lmax[1], tr.rmax[1])) << endl;
}
return 0;
}

同类题型:

  1. E. Non-Decreasing Dilemma

    \(~~~~\)代码:

P6492 STEP(线段树维护左右区间pushup)的更多相关文章

  1. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  2. 2016shenyang-1002-HDU5893-List wants to travel-树链剖分+线段树维护不同区间段个数

    肯定先无脑树链剖分,然后线段树维护一段区间不同个数,再维护一个左右端点的费用. 线段树更新,pushDown,pushUp的时候要注意考虑链接位置的费用是否相同 还有就是树链剖分操作的时候,维护上一个 ...

  3. hdu_5726_GCD(线段树维护区间+预处理)

    题目链接:hdu_5726_GCD 题意: 给你n个数(n<=1e5)然后m个询问(m<=1e5),每个询问一个区间,问你这个区间的GCD是多少,并且输出从1到n有多少个区间的GCD和这个 ...

  4. FJUT3568 中二病也要敲代码(线段树维护区间连续最值)题解

    题意:有一个环,有1~N编号,m次操作,将a位置的值改为b,问你这个环当前最小连续和多少(不能全取也不能不取) 思路:用线段树维护一个区间最值连续和.我们设出两个变量Lmin,Rmin,Mmin表示区 ...

  5. [Codeforces]817F. MEX Queries 离散化+线段树维护

    [Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...

  6. hdu2795(线段树单点更新&区间最值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...

  7. POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )

    POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...

  8. 滑动窗口(poj,线段树维护区间最值)

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  9. Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)

    recursion有一个整数序列a[n].现在recursion有m次询问,每次她想知道Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 &l ...

随机推荐

  1. Ubuntu20.04配置 ES7.17.0集群

    Ubuntu20.04配置 ES7.17.0集群 ES能做什么? elasticsearch简写es,es是一个高扩展.开源的全文检索和分析引擎,它可以准实时地快速存储.搜索.分析海量的数据. Ubu ...

  2. KingbaseES 多列分区的方法与性能

    前言 对于多列分区,可以选择单级多列的范围分区,也可以选择范围加子分区的方式.但二者在不同场景下对于性能是有差异的,这里的性能差异主要是分区裁剪引起的差异. 例子 创建两张分区表,采取不同的分区策略: ...

  3. Mysql_索引总结笔记

    Mysql 索引总结 1. 聚簇索引 InnoDB 引擎使用的就是聚簇索引,就是主键的索引,是一种数据的存储方式.所有的数据都是存储在索引的叶子结点上(与MySAM 引擎不同,MySAM是传统方式), ...

  4. 【读书笔记】C#高级编程 第二十二章 安全性

    (一)身份验证和授权 安全性的两个基本支柱是身份验证和授权.身份验证是标识用户的过程,授权在验证了所标识用户是否可以访问特性资源之后进行的. 1.标识和Principal 使用标识可以验证运行应用程序 ...

  5. SpringBoot使用自定义注解+AOP+Redis实现接口限流

    为什么要限流 系统在设计的时候,我们会有一个系统的预估容量,长时间超过系统能承受的TPS/QPS阈值,系统有可能会被压垮,最终导致整个服务不可用.为了避免这种情况,我们就需要对接口请求进行限流. 所以 ...

  6. winform,水晶报表制作

    1.安装最新的 SP:(SP 29 示例 – https://origin.softwaredownloads.sap.com/public/file/0020000001636412020) 2.新 ...

  7. Python数据科学手册-Numpy数组的计算:广播

    广播可以简单理解为用于不同大小数组的二元通用函数(加减乘等)的一组规则 二元运算符是对相应元素逐个计算 广播允许这些二元运算符可以用于不同大小的数组 更高维度的数组 更复杂的情况,对俩个数组的同时广播 ...

  8. Typora Markdown 安装包

    下载地址: 链接:https://pan.baidu.com/s/1wy0Ik95AjM5WjSC3nzOzqA 提取码:f26j 复制这段内容后打开百度网盘手机App,操作更方便哦 已更新至最新版0 ...

  9. 1-Mysql数据库简洁命令

    1-进入mysql数据库 mysql -u root -p 2-创建数据库 mysql> CREATE DATABASE serurities_master; mysql> USE ser ...

  10. overflow 隐藏滚动条样式

    在使用overflow,属性值为auto或者scroll时,很多时候会有多余的滚动条在旁边,这时就非常影响观瞻,所以我们有时需要将滚动条隐藏掉. 今天就说两种我用到的隐藏滚动条的方法,如果有其他解决方 ...