Autobus 方法记录
[COCI2021-2022#4] Autobus
题目描述
在一个国家里有 \(n\) 座城市。这些城市由 \(m\) 条公交线路连接,其中第 \(i\) 条线路从城市 \(a_i\) 出发,到 \(b_i\) 停止,路程中耗时 \(t_i\) 分钟。
Ema 喜欢旅行,但她并不喜欢在公交线路之间换乘。在旅行过程中,她希望最多只需坐 \(k\) 个不同的公交线路。
Ema 想知道,从城市 \(c_i\) 到城市 \(d_i\) 的最短旅行时间是多少(最多坐 \(k\) 个不同的公交线路)。
输入格式
第一行包含两个整数 \(n,m\),分别表示城市的数量和公交车线路的数量。
接下来 \(m\) 行,第 \(i+1\) 包含三个整数 \(a_i,b_i,t_i\),分别表示第 \(i\) 条公交车线路的起点、终点和从起点到终点所需的时间。
接下来一行包含两个整数 \(k,q\),最大坐的不同公交线路的个数和问题题的个数。
接下来 \(q\) 行,第 \(m+j+3\) 行包含两个整数 \(c_j,d_j\),表示询问从城市 \(c_j\) 到城市 \(d_j\) 的最短旅行时间。
输出格式
输出包含 \(q\) 行,第 \(i\) 行包含一个整数,表示从城市 \(c_i\) 到城市 \(d_i\) 的最短旅行时间。
样例 #1
样例输入 #1
4 7
1 2 1
1 4 10
2 3 1
2 4 5
3 2 2
3 4 1
4 3 2
1 3
1 4
4 2
3 3
样例输出 #1
10
-1
0
样例 #2
样例输入 #2
4 7
1 2 1
1 4 10
2 3 1
2 4 5
3 2 2
3 4 1
4 3 2
2 3
1 4
4 2
3 3
样例输出 #2
6
4
0
样例 #3
样例输入 #3
4 7
1 2 1
1 4 10
2 3 1
2 4 5
3 2 2
3 4 1
4 3 2
3 3
1 4
4 2
3 3
样例输出 #3
3
4
0
提示
【样例解释】

每个样例中的答案都已经标记在图中。
【数据规模与约定】
本题采用子任务捆绑测试。
- Subtask 1(15 pts):\(k ≤ n ≤ 7\)。
- Subtask 2(15 pts):\(k ≤ 3\)。
- Subtask 3(25 pts):\(k ≤ n\)。
- Subtask 4(15 pts):没有额外限制。
对于 \(100\%\) 的数据,\(2\le n \le 70,1\le m,t_i\le 10^6,1\le a_i,b_i,c_j,d_j\le n,1\le k\le10^9,1\le q \le n^2\)。
【提示与说明】
本题分值按 COCI 原题设置,满分 \(70\)。
题目译自 COCI2021-2022 CONTEST #4 T2 Autobus。
题解
题目的要求是求全源最短路,而且\(n\)(图上总点数)非常小,和\(floyd\)的相性很好,所以首先考虑\(floyd\)算法。
本题的第一个难点在于“最多只需坐\(k\)个不同的公交线路”。但仔细观察数据范围,\(2\le n \le 70,1\le k \le10^9\),可以见得在大部分情况下,\(k\)是比\(n\)大的。因为每个点至多到一次,所以一个点到该定点的线路也最多走一次,最复杂的旅行方案也只需要走\((n-1)\)条线路。而\(k\)比\(n\)大就意味着旅行不再受“最多只需坐\(k\)个不同的公交线路”的限制。
所以,对于这部分的数据,我们可以跑一个裸的\(floyed\)来处理出图上任意两个点之间的最短路。
if(k>=n)
{
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyd标志性的三层for循环
{
ans[i][j]=minn(ans[i][j],ans[i][l]+ans[l][j]);
//ans[i][j]根据floyd算法的定义,为i到j的最短路
}
}
}
}
那么剩下的问题就是处理会受\(k\)值限制的情况了。
既然有一个对经过路径条数限制的条件,那么我们不妨给记录最短路的数组再增加一个维度。
令\(dis[i][j][k]\)表示经过\(k\)条边的前提下,\(i\)到\(j\)的最短路。
再加入\(k\)限制之前,我们先来看看传统的\(floyd\)是如何工作的。

可以直观地看到,类似动态规划,\(dis[i][j]\)可能由\(dis[i][l]+dis[l][j]\)更新而来,或者由\(dis[i][j]\)直接继承。
那么考虑在这个更新的过程中加入\(k\)的限制。
若\(dis[i][j]\)是由\(dis[i][l]+dis[l][j]\)更新而来的,那么在这种情况下\(i\)到\(j\)的经过边数就是\(i\)到\(l\)的经过边数与\(l\)到\(j\)的经过边数的总和。

那\(i\)到\(j\)可能的经过的边数就可以通过\(i\)到\(l\)与\(l\)到\(j\)可能经过的边数更新。我们的方法是,外层循环从\(1\)到\(k\)枚举\(i\)到\(l\)可能经过的边数\(p1\),内层循环从\(1\)枚举\(l\)到\(j\)可能经过的边数\(p2\),且\(p1+p2<=k\).

k=minn(k,n);
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyd标志性的三层for循环
{
for(int p1=1;p1<=k;p1++)//i到l可能的边数
{
for(int p2=1;p2<=k&&p1+p2<=k;p2++)//l到j可能的边数
{
dis[i][j][p1+p2]=minn(dis[i][j][p1+p2],dis[i][l][p1]+dis[l][j][p2]);
}
}
}
}
}
然后我们便得到了从点\(i\)到点\(j\),经过\(1~k\)条边的最短路。然后我们再用\(ans[i][j]\)处理出这经过\(1~k\)条边的方案中最短的情况。(即最短路中的最短路)
综合以上两种情况,\(ans[i][j]\)就是最终的最短路了。
如果想用以下代码AC,需要做好常数优化,比如\(O2\),\(register\)...
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=1e9;
const int N=75;
int n,m,a,b,t;
int k,q,c,d;
int dis[N][N][N];//dis[i][j][k]:经过k条边的前提下,i到j的最短路
int ans[N][N];
int minn(int a,int b)
{
return a<b?a:b;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
dis[i][j][k]=1e9;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=1e9;
for(int i=1;i<=n;i++)
for(int k=1;k<=n;k++)
dis[i][i][k]=0;
for(int i=1;i<=n;i++)
ans[i][i]=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&t);
dis[a][b][1]=minn(dis[a][b][1],t);
ans[a][b]=minn(ans[a][b],t);
}
scanf("%d%d",&k,&q);
if(k>=n)
{
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyed标志性的三层for循环
{
ans[i][j]=minn(ans[i][j],ans[i][l]+ans[l][j]);
//ans[i][j]根据floyed算法的定义,为i到j的最短路
}
}
}
}
else
{
k=minn(k,n);
for(int l=1;l<=n;l++)//l枚举断点
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)//floyed标志性的三层for循环
{
for(int p1=1;p1<=k;p1++)//i到l可能的边数
{
for(int p2=1;p2<=k&&p1+p2<=k;p2++)//l到j可能的边数
{
dis[i][j][p1+p2]=minn(dis[i][j][p1+p2],dis[i][l][p1]+dis[l][j][p2]);
}
}
}
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=inf;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int l=1;l<=k;l++)
ans[i][j]=minn(ans[i][j],dis[i][j][k]);
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&c,&d);
if(c==d) puts("0");
else if(ans[c][d]==inf) puts("-1");
else printf("%d\n",ans[c][d]);
}
return 0;
}
继续考虑,若我们能优化掉一层循环,是不是就可以更安稳地A掉这道题了?
依然是以\(k\)作为突破口,有以下策略:“\(k\)越大,答案一定不会更差。”现在我们要利用这种策略,那么上文“令\(dis[i][j][k]\)表示经过\(k\)条边的前提下,\(i\)到\(j\)的最短路”的定义就不合适了。因为我们并不一定要把\(k\)条边走完,\(k\)只是我们做选择时的限制。\(k\)越大,说明限制越宽松。
那么我们的解法便初具雏形了。最外层从\(2\)到\(k\)枚举每一种最大经过的边限制,(为什么不从\(1\)开始枚举?因为最多经过一条边就是相邻两点间的距离了)在循环内跑一个\(floyd\),总共四层循环。
剩下的问题就是,转移方程如何设计。首先我们需要明确一点:\(k\)越大,说明选择的面更广,所以每一次的答案,是从上一次的答案加上“新的选择”生成的。
b[i][j]=minn(b[i][j],a[i][l]+init[l][j]);
这就是核心转移方程,其中\(b\)数组记录下一次的答案,\(a\)数组记录这一次的答案,\(init\)数组是我们最开始输入的图,它正代表着“新的选择”。
为了维护这个转移方程,首先我们要把输入的图记录下来——\(init\)数组在后续是不会改变的;然后用\(a,b\)两个数组记录这次的结果和下次的结果。具体地讲,就是每轮循环开始时将\(a\)赋给\(b\),跑完\(floyd\)后再将\(b\)赋给\(a\),如此往复。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=75;
const int inf=1e9;
int n,m,u,v,t;
int k,q,c,d;
int init[N][N],a[N][N],b[N][N];
int minn(int a,int b)
{
return a<b?a:b;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
init[i][j]=inf;//init数组初始化为一个极大值
for(int i=1;i<=n;i++)
init[i][i]=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&t);
init[u][v]=minn(init[u][v],t);
}
scanf("%d%d",&k,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=init[i][j];//a数组最开始的状态就是init
k=minn(k,n);//同理,每个点最多到一次,所以和n取最小
for(int p=2;p<=k;p++)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
b[i][j]=a[i][j];//a赋给b
for(int l=1;l<=n;l++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
b[i][j]=minn(b[i][j],a[i][l]+init[l][j]);//核心:floyd
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=b[i][j];//b赋给a
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&c,&d);
if(c==d) puts("0");
else if(a[c][d]==inf) puts("-1");
else printf("%d\n",a[c][d]);
}
return 0;
}
还可以更快吗?
注意到转移方程:
b[i][j]=minn(b[i][j],a[i][l]+init[l][j]);
因为该转移满足结合律,所以考虑用广义矩阵快速幂优化。再想,上个方法的最外层循环是不是在枚举\(k\)?那么,这个转移从本质上来讲就是求\(init[l][j]^k\).
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=75;
const int inf=0x3f3f3f3f;//为了方便memset的使用,inf不可以开成1e9
int n,m,u,v,t;
int x,q,c,d;
int init[N][N];
int ans[N][N];
int minn(int x,int y)
{
return x<y?x:y;
}
void mul(int a[N][N],int b[N][N])//矩阵乘法,仔细观察会发现转移方程像极了floyd
{
int c[N][N];
memset(c,inf,sizeof(c));
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c[i][j]=minn(c[i][j],a[i][k]+b[k][j]);
memcpy(a,c,sizeof(c));
}
int main()
{
scanf("%d%d",&n,&m);
memset(init,inf,sizeof(init));
for(int i=1;i<=n;i++) init[i][i]=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&t);
init[u][v]=minn(init[u][v],t);
}
scanf("%d%d",&x,&q);
x=minn(x,n);
memset(ans,inf,sizeof(ans));
for(int i=1;i<=n;i++) ans[i][i]=0;
while(x)//矩阵快速幂
{
if(x&1) mul(ans,init);
mul(init,init);
x>>=1;
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&c,&d);
if(ans[c][d]==inf) puts("-1");
else printf("%d\n",ans[c][d]);
}
return 0;
}
Autobus 方法记录的更多相关文章
- EF里查看/修改实体的当前值、原始值和数据库值以及重写SaveChanges方法记录实体状态
本文目录 查看实体当前.原始和数据库值:DbEntityEntry 查看实体的某个属性值:GetValue<TValue>方法 拷贝DbPropertyValues到实体:ToObject ...
- 64位 SQL Server2008链接访问Oracle 过程汇总解决方法记录
64位 SQL Server2008链接访问Oracle 过程汇总解决方法记录 经过几天不停的网上找资料,实验,终于联通了. 环境:系统:win 2008 ,SqlServer2008 R2, 连接O ...
- js实用方法记录-js动态加载css、js脚本文件
js实用方法记录-动态加载css/js 附送一个加载iframe,h5打开app代码 1. 动态加载js文件到head标签并执行回调 方法调用:dynamicLoadJs('http://www.yi ...
- js实用方法记录-简单cookie操作
js实用方法记录-简单cookie操作 设置cookie:setCookie(名称,值,保存时间,保存域); 获取cookie:setCookie(名称); 移除cookie:setCookie(名称 ...
- js实用方法记录-指不定哪天就会用到的js方法
js实用方法记录-指不定哪天就会用到的js方法 常用或者不常用都有 判断是否在微信浏览器中 测试代码:isWeiXin()==false /** * 是否在微信中 */ function isWeix ...
- Java给各个方法记录执行时间
Java给各个方法记录执行时间 long startTime = System.currentTimeMillis();...//要测试时间的方法LoggerFactory.getLogger(Bas ...
- make menuconfig error 解决方法记录
新建的一个虚拟机,发现make menuconfig 后会出错,查了一下是缺少一些库. 这个错误已经错了两次了,我不希望第三次出现了还想不起来,所以特此记录. # 错误信息: make[2]: *** ...
- 简单一键CENTOS6 安装PPTP VPN方法记录
申明:我们使用PPTP VPN仅仅只能用在查阅资料等正规渠道,不要用在不良用途上.方法收集于网上,这里我用在搬瓦工VPS(VPS方案直达),采用的是CENTOS6 64位系统.我们需要预先将VPS服务 ...
- ASP.NET页面优化性能提升方法记录
今天与大家分享:一种优化页面执行速度的方法.采用这个方法,可以使用页面的执行速度获得[8倍]的提升效果. 为了让您对优化的效果有个直观的了解,我准备了下面的测试结果截图: 测试环境:1. Window ...
随机推荐
- docker容器技术基础入门
目录 docker容器技术基础入门 容器(Container) 传统虚拟化与容器的区别 Linux容器技术 Linux Namespaces CGroups LXC docker基本概念 docker ...
- 使用Linux、Nginx和Github Actions托管部署ASP.NET Core 6.0应用
使用Linux.Nginx和Github Actions托管部署ASP.NET Core 6.0应用 前言 本文主要参考微软这篇文档而来 Host ASP.NET Core on Linux with ...
- MySQL更新锁表超时 Lock wait timeout exceeded
背景 最近在做一个订单的钉钉审批功能,钉钉审批通过之后,订单更新审核状态,然后添加一条付款,并且更新付款状态: // 订单审批通过 @Transactional(rollbackFor = Excep ...
- Excel 逻辑函数(一):IF 和 IFS
IF IF 函数有三个参数,第一个为条件判断,第二个是当条件为真时执行的表达式,第三个是条件为假时执行的表达式. IF(A1="是", A2 * 0.8, 0),如果 A1 单元格 ...
- java方法---递归
java方法递归 1.什么是递归 就是自己调用自己: 2.递归结构的两个部分 递归头:什么时候不调用自身方法.如果仅有头,将陷入死循环.递归体:什么时候需要调用自身方法.
- 【java】学习路径17-StringBuffer、StringBuilder的使用与区别
本文讲解StringBuffer和StringBuilder的使用与区别. 1-- String String类型我们已经很熟悉了,String一旦被赋值,其在堆中的数据便无法修改. 平时我们的&qu ...
- 说说 JSON 格式的弊端与解决方法
JSON 格式是目前最流行的数据交互格式,广泛应用于前后端分离的系统.但也有一些场合不适合使用 JSON 格式. 1 JSON 格式弊端 有这样的一个需求:希望把客户端的日志上传到服务器存储起来.原先 ...
- 二极管1N4148和1N4007的区别
二极管1N4148和1N4007的定义 1N4148 是开关二极管,耐压100V,电流150mA,反向恢复速度快,为nS级别. 1N4007 是普通整流二极管,耐压1000V,电流1A ,反向恢复时间 ...
- KingbaseES V8R6C5B041手工创建集群测试案例
案例说明: KingbaseES V8R6C5B041版本和以前的KingbaseES R6有一定的区别,增加了"securecmdd"的工具,并且在install.conf配 ...
- CentOS7_K8S安装指南
https://www.cnblogs.com/liu-shuai/articles/12177298.html 不能完全按照他来装,因为他装的是15.5的,15.5 有部分组件在阿里云镜像上没有,导 ...