tensorflow源码解析之common_runtime-device
目录
- 核心概念
- device
- device_factory
- device_mgr
- device_set
1. 核心概念
在framework部分,我们介绍了DeviceAttributes和DeviceBase两个结构,这些其实是为了我们今天要介绍的Device类做准备的。感兴趣的读者可以去回顾下前面讲过的内容。Device类只是对DeviceBase类的继承,没有添加更多新的数据成员,但提供了Compute计算接口。DeviceSet是一个设备集合类,而DeviceMgr与DeviceSet的不同点在于,它提供了设备管理的功能,为设备查找和计数提供了便利的数据结构。最后,DeviceFactory是为了产生某种类型的设备准备的工厂类,同样的设备类型(比如CPU)会对应不同的工厂,意味着不同的实现,而不同的工厂有着不同的权重。这里的权重是为了辅助我们选择某种类型的设备用的。
2. device
Device类,除了包含对内部私有数据的访问API之外,还包含了核心的计算API Compute,我们先来看一下它的结构:
class Device : public DeviceBase {
public:
virtual void Compute(OpKernel* op_kernel, OpKernelContext* context){
op_kernel->Compute(context);
}
virtual void ComputeAsync(AsyncOpKernel* op_kernel, OpKernelContext* context, AsyncOpKernel::DoneCallback done){
op_kernel->ComputeAsync(context, std::move(done));
}
//...
private:
const DeviceAttributes device_attributes_;
DeviceNameUtils::ParsedName parsed_name_;
OpSegment op_seg_;
ResourceMgr* rmgr_ = nullptr;
}
TF对于设备名称是有要求的,它必须满足这种格式:/job:_/replica:_/task:_/(gpu|cpu):_,举个例子:/job:train/replica:0/task:3/gpu:2。其中,Device类的数据成员parsed_name_就是对这种设备名称的拆解,感兴趣的读者可以自行看下ParsedName的定义。ResourceMgr和OpSegment我们之前在framework部分也都介绍过了。所以从数据角度讲,Device没有什么新鲜的,只是对原有的关于设备的数据做了一个整合。但从API的角度讲,它包含了一个计算接口Compute,实际上也就是对OpKernel中的Compute接口的封装。
3. device_set
DeviceSet是一个容器类,用于管理一个模型使用的不同设备。这个类相对比较简单,我们看它的结构:
class DeviceSet {
public:
//...
private:
std::vector<Device*> devices_;
std::unordered_map<string, Device*> device_by_name_;
Device* client_device_ = nullptr;
}
其中,device_by_name_是一个从设备全称到设备指针的映射,而client_device_是我们从devices_中挑选的,默认的客户端设备。
4. device_mgr
DeviceMgr顾名思义是一个设备管理类,其实它主要是提供了一系列数据结构来提高API的效率,比如,我们要查找一个给定设备名的设备指针,或者要对某种类型的设备计数。针对这种高频操作,DeviceMgr为其准备了高效的数据结构。类的结构如下:
class DeviceMgr {
public:
//...
private:
typedef gtl::InlinedVector<Device*, 8> DeviceVec;
DeviceVec devices_;
std::unordered_map<StringPiece, Device*, StringPiece::Hasher> device_map_;
core::Arena name_backing_store_;
std::unordered_map<string, int> device_type_counts_;
}
device_map_是为了提高查找指定名称的设备的效率,device_type_counts_是为了提高查找指定类型的设备数的效率。
5. DeviceFactory
正如刚才提到过的,DeviceFactory代表了某种设备(比如CPU)的某种实现的工厂类。下面我们看下DeviceFactory类的结构:
class DeviceFactory {
public:
static void Register(const string& device_type, DeviceFactory* factory, int priority);
static DeviceFactory* GetFactory(const string& device_type);
static Status AddDevices(const SessionOptions& options, const string& name_prefix, std::vector<Device*>* devices);
static Device* NewDevice(const string& type, const SessionOptions& options, const string& name_prefix);
virtual Status CreateDevices(const SessionOptions& options, const string& name_prefix, std::vector<Device*>* devices) = 0;
static int32 DevicePriority(const string& device_type);
};
看完这个类,我们感觉很疑惑,它提供了很多的API,但是没有数据成员,那它注册的那些工厂,存储在哪里呢?
别慌,我们在device_factory.cc文件中,找到了这样的定义:
struct FactoryItem {
std::unique_ptr<DeviceFactory> factory;
int priority;
};
std::unordered_map<string, FactoryItem>& device_factories(){
static std::unordered_map<string, FactoryItem>* factories = new std::unordered_map<string, FactoryItem>;
return *factories;
}
对于第二个函数,它内部定义了一个静态成员,因此相当于提供了一个全局的从设备类型名称到其生产工厂的映射。每当我们需要这个映射时,就调用这个函数。实际上,DeviceFactory的很多成员函数,就是这样实现的。
另外,TF还提供了一个Registrar类,为DeviceFactory提供了注册的入口:
template<class Factory> class Registrar {
public:
explicit Registrar(const string& device_type, int priority=50){
DeviceFactory::Register(device_type, new Factory(), priority);
}
};
它实际上是为某种设备类型注册其设备工厂。
关于设备工厂类,我们在代码中经常看到priority,对于权重,我们详细说明一下:
- 对于同样一种设备类型,不同的注册可以由不同的权重,即同一个设备类型的不同实现,可以拥有不同的权重。权重主要被应用于以下两个方面:
- (接上)第一,当我们需要为某一个特定的设备类型选择工厂时,拥有最高权重的工厂将会被选择。例如,如果有如下的两种注册信息
Registrar<CPUFactory1>("CPU", 125);和
Registrar<CPUFactory2>("CPU", 150);
那么当调用DeviceFactory::GetFactory("CPU")时,CPUFactory2将会被返回。 - (接上)第二,当需要在DeviceSet中选择一种设备类型时,选择的顺序由权重priority决定。例如,对于以下的两种注册:
Registrar<CPUFactory>("CPU",100);和
Registrar<GPUFactory>("GPU",200);
则DeviceType("GPU")将会被优先选择。 - 不同设备的默认权重如下:
GPU:200,SYCL:200,GPUCompatibleCPU:70,ThreadPoolDevice:60,Default:50。
tensorflow源码解析之common_runtime-device的更多相关文章
- tensorflow源码解析之common_runtime拾遗
把common_runtime中剩余的内容,按照文件名排序进行了简单的解析,时间原因写的很仓促,算是占个坑,后续有了新的理解再来补充. allocator_retry 有时候内存分配不可能一次完成,为 ...
- tensorflow源码解析系列文章索引
文章索引 framework解析 resource allocator tensor op node kernel graph device function shape_inference 拾遗 c ...
- Tensorflow源码解析1 -- 内核架构和源码结构
1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层.比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android ...
- tensorflow源码解析之framework拾遗
把framework中剩余的内容,按照文件名进行了简单解析.时间原因写的很仓促,算是占个坑,后面有了新的理解再来补充. allocation_description.proto 一个对单次内存分配结果 ...
- tensorflow源码解析之common_runtime-executor-上
目录 核心概念 executor.h Executor NewLocalExecutor ExecutorBarrier executor.cc structs GraphView ExecutorI ...
- tensorflow源码解析之common_runtime-executor-下
目录 核心概念 executor.h Executor NewLocalExecutor ExecutorBarrier executor.cc structs GraphView ExecutorI ...
- tensorflow源码解析之framework-allocator
目录 什么是allocator 内存分配器的管理 内存分配追踪 其它结构 关系图 涉及的文件 迭代记录 1. 什么是allocator Allocator是所有内存分配器的基类,它定义了内存分配器需要 ...
- Tensorflow源码解析2 -- 前后端连接的桥梁 - Session
Session概述 1. Session是TensorFlow前后端连接的桥梁.用户利用session使得client能够与master的执行引擎建立连接,并通过session.run()来触发一次计 ...
- tensorflow源码解析之distributed_runtime
本篇主要介绍TF的分布式运行时的基本概念.为了对TF的分布式运行机制有一个大致的了解,我们先结合/tensorflow/core/protobuf中的文件给出对TF分布式集群的初步理解,然后介绍/te ...
- tensorflow源码解析之framework-op
目录 什么是op op_def定义 op注册 op构建与注册辅助结构 op重写 关系图 涉及的文件 迭代记录 1. 什么是op op和kernel是TF框架中最重要的两个概念,如果一定要做一个类比的话 ...
随机推荐
- Spring学习二:Spring Bean 定义
Bean 定义 被称作 bean 的对象是构成应用程序的支柱也是由 Spring IoC 容器管理的.bean 是一个被实例化,组装,并通过 Spring IoC 容器所管理的对象.这些 bean 是 ...
- iOS 动画系列之动画解释
动画解释 译文 http://blog.jobbole.com/69111/ 原文 http://www.objc.io/issues/12-animations/animations-explain ...
- iOS - TableViewCell分割线 --By吴帮雷
千万别小看UI中得线,否则你的设计师和测试组会无休止地来找你的!!(如果是美女还好,如果是恐龙....) 在开发中运用最多的是什么,对,表格--TableView,之所以称作表格,是因为他天生带有分割 ...
- Pandas中Series与Dataframe的初始化
(一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...
- python基础语法_10错误与异常
Python有两种错误很容易辨认:语法错误和异常. 语法错误 Python 的语法错误或者称之为解析错,是初学者经常碰到的,如下实例 异常 即便Python程序的语法是正确的,在运行它的时候,也有可能 ...
- 虫师Selenium2+Python_3、Python基础
P38--Python哲学 打开Python shell,输入import this,会看到下面的话: The Zen of Python, by Tim Peters Beautiful is ...
- 模块random+os+sys+json+subprocess
模块random+os+sys+json+subprocess 1. random 模块 (产生一个随机值) import random 1 # 随机小数 2 print(random.rando ...
- 生产环境搭建高可用Harbor(包括恢复演练实操)
生产环境搭建高可用Harbor(包括恢复演练实操) 前言 因资源成本问题,本Harbor高可用架构为最小开销方案,如果资源充足,可以将PG.Redis全部使用使用云厂商集群模式. 同时为了配置简单,并 ...
- 从Spring容器的角度理解Dubbo扩展点的加载时机
对于Dubbo提供的扩展点,主程序执行的过程中并没有显示调用加载的过程,无论是自激活的Filter还是自适应的ThreadPool.那么这样的扩展点在程序运行的哪个节点调用的呢?跟踪之前性能监控扩展点 ...
- 解决Chrome94之后非安全网站请求localhost报CORS问题
问题 自从谷歌浏览器升级到chrome94版本后,在非安全网站下通过请求本地接口就会出现以下错误: Access to XMLHttpRequest at 'http://127.0.0.1:1000 ...