直觉告诉我一般情况下,询问古怪的题都是分块,但是这一类题不太一样。

思考一个奇怪的暴力,每次询问的时候询问 \(f(1,k),f(2,k+1),f(3,k+2),...f(n-k+1,n)\),然后加起来一定是答案。

差分,思考 \(f(l+1,r+1)-f(l,r)\) 是多少。容易知道其对答案的贡献为 \((n-r)\)。

考虑 \(l\) 和 \(r+1\) 两个位置。

接下来设 \(pre[i]\) 为上一个颜色与自身相同的最靠右的位置,\(nxt[i]\) 类似。

可以发现 \(f(l+1,r+1)-f(l,r)=[pre[r+1]<l]-[nxt[l]>r+1]\)

问题转化为 \(\sum_{i=1}^{n-k}([pre[i+k]<i]-[nxt[i]>i+k])(n+1-k-i)\)。

最后只需要加上 \([1,k]\) 的颜色个数乘上 \(n-k+1\) 即可。

推一推上面的东西:

\[\sum_{i=1}^{n-k}([k<(i+k-pre[i+k])]-[nxt[i]-i>k])(n+1-k-i)
\]

这是经典的二维偏序,因为带修所以可以随随便便做到 \(O(n\log^2n)\)。但是这太简单了!所以其实有 \(O(n\log n)\) 的做法。

注意到后面的权值随随便便维护,所以我们只需要维护这个范围即可。

设 \(x[i]=i-pre[i],y[i]=nxt[i]-i\),那么我们询问的实际上是 \((\sum_{i=k+1}^n[k<x[i]](n-i+1))+(\sum_{i=1}^{n-k}[k<y[i]](n-k-i+1))\)。

注意到很明显在 \(i\leq k\) 时有 \(x[i]\leq k\),且 \(n-k+1\leq i\) 时也有 \(y[i]\leq k\),所以实际上这两部分都不会被算入贡献,直接开两颗线段树即可。

至于如何 \(O(n\log n)\) 询问前缀颜色个数,用 \(pre\) 和 \(nxt\) 随便维护一下就好了,具体可以参考 BSOJ7791。

BSOJ7526口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. 通过导入Jar包的方式使用JSONObject

    如果想要在Java中使用JSONObject,而且只想通过导入jar包的方式下,那么仅仅导入Json的jar包还是不够的. 不然会报:java.lang.ClassNotFoundException: ...

  2. CSS布局居中

    1.把margin设置为auto,此方法只能进行水平的居中,且对浮动元素或绝对定位元素无效.

  3. 分布式消息队列RocketMQ(一)安装与启动

    分布式消息队列RocketMQ 一.RocketMQ简介 RocketMQ(火箭MQ) 出自于阿里,后开源给apache成为apache的顶级开源项目之一,顶住了淘宝10年的 双11压力 是电商产品的 ...

  4. dfs+search

    1.数的划分 点击查看搜索 #include<iostream> #include<cstdio> #include<cmath> #include<algo ...

  5. 在公司内部网络如何搭建Python+selenium自动化测试环境

    在公司内部安装Python+selenium测试环境,由于不能连外网所以不能使用pip命令进行安装,经过多次尝试终于安装成功,现总结如下分享给大家,也希望跟大家一起学习和交流自动化网页测试时遇到的问题 ...

  6. 3U VPX i7 刀片计算机

    产品概述 该产品是一款基于第三代Intel i7双核四线程的高性能3U VPX刀片式计算机.产品提供了多个高速PCIe总线接口,其中3个x4 PCIe 3.0接口,1个x4 PCIe 2.0接口.x4 ...

  7. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  8. suse 12 安装git客户端

    suse-linux:~ # zypper addrepo http://download.opensuse.org/repositories/devel:/tools:/scm/SLE_12_SP5 ...

  9. c++ 拷贝构造函数、拷贝运算符、析构函数

    拷贝构造函数.拷贝运算符.析构函数 拷贝构造函数.拷贝运算符.析构函数 定义行为像值的类 class HasPtr{ public: HasPtr(const string &s = stri ...

  10. 通过Dapr实现一个简单的基于.net的微服务电商系统(十八)——服务保护之多级缓存

    很久没有更新dapr系列了.今天带来的是一个小的组件集成,通过多级缓存框架来实现对服务的缓存保护,依旧是一个简易的演示以及对其设计原理思路的讲解,欢迎大家转发留言和star 目录:一.通过Dapr实现 ...