晚自习用10min推出结论,太屑了

设 \(S=\sum_{i=1}^n a_i\),很显然每个位置的答案 \(ans_i\) 只和 \(a_i\) 和 \(S\) 有关。让我们打个表,找一下规律:

\[a_i
\]
\[S-a_i
\]
\[nS-2S+a_i
\]
\[n^2S-3nS+3S-a_i
\]
\[n^3S-4n^2S+6nS-4S+a_i
\]

我们发现系数是杨辉三角,也就是二项式系数。

所以答案是:

\[\sum_{i=0}^{T-1}\binom T i(-1)^in^{T-i-1}S+(-1)^Ta_i
\]

二项式定理化简一下,答案就是 \(\frac {(n-1)^T+(-1)^{T+1}} n \times S+(-1)^Ta_i\)。

有没有什么严格的证明?

这里需要用到生成函数。

设 \(f_{T,i}\) 是变换 \(T\) 次后,\(n^{i-1}S\) 的系数。

很明显有 \(f_{T,i}=nf_{T-1,i-1}-f_{T-1,i}\)。

设 \(F_T(x)=\sum_{i=0}^T f_{T,i}x^i\),我们要求的就是 \(\frac {F_T(n)-f_{T,0}} n \times S+f_{T,0}a_i\)。

考虑 \(F_T(x)\) 与 \(F_{T-1}(x)\) 的关系,如果将上面的递推式中的 \(n\) 看做 \(x\),很明显有 \(F_T(x)=(x-1)F_{T-1}(x)\)。

而我们又知道 \(F_0(x)=1\),所以 \(F_T(x)=(x-1)^T\)。

SP2742题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 配置phpmemcache扩展,Loaded Configuration File (none)

    首先我来描述问题: 编译安装完php的扩展库memcache后,在php.ini文件中添加了memcache.so的配置文件 extension=/usr/local/php5.6.27/lib/ph ...

  2. Xcode全系列下载地址

    Xcode全系列下载地址,不断更新dmg 格式 下载链接:http://pan.baidu.com/s/1mgyxLP2

  3. 简单仿京东"筛选"界面 双导航栏控制器共存 by Nicky.Tsui

    大概就是这么一个效果 如图.大概可以看到,"筛选"视图后面有一层视图盖住了后面原来的视图 那么我们可以通过加一个view到导航栏控制器的view里面来实现 //该view作为全局变 ...

  4. 9、Selenium grid2

    P228--Selenium Grid2 P233--Selenium Grid 工作原理 P236--Remote 应用 P246--WebDriver 驱动 driver = webdriver. ...

  5. 帆软报表(finereport)JS实现点击参数面板按钮显示或隐藏数据

    当报表中列出数据太多时,想通过显示按钮隐藏明细数据只显示统计数据.如下图示例,那么该如何实现呢?本文以FineReport为例,来讲述JS如何实现点击参数面板按钮显示或隐藏数据. 打开报表 在参数面板 ...

  6. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  7. suse 12安装 python-pip

    文章目录 方法一 安装setup-tools 安装pip 方法二 配置阿里云pip源 pip安装pyotp 方法一 安装setup-tools linux-oz6w:~ # wget https:// ...

  8. php spl_autoload_register 实现自动加载

    spl_autoload_register (PHP 5 >= 5.1.2, PHP 7) spl_autoload_register - 注册给定的函数作为 __autoload 的实现 语法 ...

  9. 图解python | 简介

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/56 本文地址:http://www.showmeai.tech/article-det ...

  10. Vue 源码解读(7)—— Hook Event

    前言 Hook Event(钩子事件)相信很多 Vue 开发者都没有使用过,甚至没听过,毕竟 Vue 官方文档中也没有提及. Vue 提供了一些生命周期钩子函数,供开发者在特定的逻辑点添加额外的处理逻 ...