A

题面

思路

非常抽象地让你构造树,很容易想到 \(prufer\) 序列(如果你会的话)

说明一下:\(prufer\) 序列可以唯一确定一颗树的形态

若树的节点个数为 \(n\),那么 \(prufer\) 序列长度为 \(n-2\) ,且一个节点出现的个数为它的度数减一(不要问我为什么,因为 \(prufer\) 序列就是这样的)

那么我们就考虑 \(dp\) 了

设 \(f_{i,j,k}\) 表示考虑前 \(i\) 个数,选出 \(j\) 个数,当前 \(prufer\) 序列长度为 \(k\)。

为何要设 \(k\) ?因为一个节点在 \(prufer\) 序列中出现可能不止一次

考虑转移: \(f_{i,j,k} = \sum_{l=1}^{\min(a_i-1,k)}\binom{k}{l}f_{i-1,j-1,k-l}+f_{i-1,j,k}\)

\(f_{i-1,j,k}\) 意思是第 \(i\) 位不选

选的话,\(l\) 枚举选多少个,\(\binom{k}{l}\) 表示选了之后放到序列中的方案数

那么答案如何计算?

\(ans_x=\sum_{j=1}^x\binom{n-j}{x-j}f_{n,j,x-2}\)

意思是考虑 \(prufer\) 序列中数的种数,用 \(j\) 个数凑出长为 \(x-2\) 的序列。

因为叶子节点不会出现在序列中,所以我们再从剩下 \(n-j\) 个数中选出还差的 \(x-j\) 个数

\(Code\)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL; const int N = 55;
const LL P = 1e9 + 7;
LL f[N][N][N] , fac[N];
int a[N] , n , T; inline LL fpow(LL x , LL y)
{
LL res = 1;
while (y)
{
if (y & 1) res = res * x % P;
y >>= 1 , x = x * x % P;
}
return res;
} inline LL C(int n , int m){return fac[n] * fpow(fac[m] * fac[n - m] % P , P - 2) % P;} int main()
{
freopen("a.in" , "r" , stdin);
freopen("a.out" , "w" , stdout);
fac[0] = 1;
for(register int i = 1; i <= 52; i++) fac[i] = (i * 1LL * fac[i - 1]) % P;
scanf("%d" , &T);
while (T--)
{
scanf("%d" , &n);
for(register int i = 1; i <= n; i++) scanf("%d" , &a[i]);
memset(f , 0 , sizeof f);
f[0][0][0] = 1;
for(register int i = 1; i <= n; i++)
for(register int j = 0; j <= i; j++)
for(register int k = j; k <= n - 2; k++)
{
f[i][j][k] = f[i - 1][j][k];
if (j != 0) for(register int l = 1; l <= min(a[i] - 1 , k); l++)
f[i][j][k] = (f[i][j][k] + f[i - 1][j - 1][k - l] * C(k , l)) % P;
}
printf("%lld " , (LL)n);
LL ans;
for(register int x = 2; x <= n; x++)
{
ans = 0;
for(register int j = 0; j <= x; j++) ans = (ans + f[n][j][x - 2] * C(n - j , x - j) % P) % P;
printf("%lld " , ans);
}
printf("\n");
}
}

JZOJ 5033. 【NOI2017模拟3.28】A的更多相关文章

  1. JZOJ【NOIP2013模拟联考14】隐藏指令

    JZOJ[NOIP2013模拟联考14]隐藏指令 题目 Description 在d维欧几里得空间中,指令是一个长度为2N的串.串的每一个元素为d个正交基的方向及反方向之一.例如,d = 1时(数轴) ...

  2. [jzoj 5178] [NOIP2017提高组模拟6.28] So many prefix? 解题报告(KMP+DP)

    题目链接: https://jzoj.net/senior/#main/show/5178 题目: 题解: 我们定义$f[pos]$表示以位置pos为后缀的字符串对答案的贡献,答案就是$\sum_{i ...

  3. [jzoj 5177] [NOIP2017提高组模拟6.28] TRAVEL 解题报告 (二分)

    题目链接: https://jzoj.net/senior/#main/show/5177 题目: 题解: 首先选出的泡泡怪一定是连续的一段 L,R 然后 L 一定属于虫洞左边界中的某一个 R 也同样 ...

  4. NOIP模拟 6.28

    NOIP模拟赛6.28 Problem 1 高级打字机(type.cpp/c/pas) [题目描述] 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这 ...

  5. [jzoj 5664] [GDOI2018Day1模拟4.6] 凫趋雀跃 解题报告(容斥原理)

    interlinkage: https://jzoj.net/senior/#contest/show/2703/3 description: solution: 考虑容斥原理,枚举不合法的走的步数 ...

  6. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  7. [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)

    题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...

  8. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  9. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  10. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

随机推荐

  1. orcl between and 时间

    在网上查阅,大家都说between and两边都会包含,但是对于时期来讲,他会包含前者,不会包含后者. 也就是说求一个时间介于上周六到本周五的区间,用between and 需要计算出上周六的时间和本 ...

  2. ArcGIS 通过字段计算 设置顺序编码

    地块编号="前缀" & left("0000",4-len( [FID]+1)) & ([FID] +1)

  3. Google Chrome(谷歌浏览器)安装使用

    谷歌浏览器官网https://www.google.cn/chrome/ Chrome是由Google开发的一款简单便捷的网页浏览工具.谷歌浏览器(Google Chrome)可以提帮助你快速.安全的 ...

  4. 第三方模块 request openpyxl

    目录 第三方模块的下载 pip工具 简介 pip使用注意 pip位置和环境变量设置 pip安装第三方模块 使用pip下载可能会遇到的问题 pycharm的第三方模块下载功能 request模块 req ...

  5. IDEA引入本地jar包的几种方法

    有时候,项目需要引入一些第三方的依赖,这时候,就需要导入这些jar包.以下分享两种方式: 方式一.使用IDEA程序引入jar包 1.首先,点他! 2.然后,点他! 3.再然后,点他! 4.最后,在这里 ...

  6. MongoDB 索引类型介绍

    转载请注明出处: 目录 1.单字段索引 2.复合索引 3.多key索引 4.其他类型索引 5.索引额外属性 6.MongoDB 索引相关的常用sql命令 MongoDB 支持多种类型的索引,包括单字段 ...

  7. week_9(异常检测)

    Andrew Ng 机器学习笔记 ---By Orangestar Week_9 This week, we will be covering anomaly detection which is w ...

  8. snprintf拼接字符串

    例如编辑一个txt文档,不断将字符输入,最终形成一个长句子.可以看成是字符串的不断拼接.snprintf函数具有这个功能. #include<stdio.h> void main(void ...

  9. 原生js实现rsa加密

    原生js实现rsa加密 示例 createNewUserKey().then(function(keyPairs) { encrypt("this is origin text", ...

  10. DVWA靶场实战(六)——Insecure CAPTCHA

    DVWA靶场实战(六) 六.Insecure CAPTCHA: 1.漏洞原理: Insecure CAPTCHA(不安全的验证码),CAPTCHA全程为Completely Automated Pub ...