B. Quick Sort

You are given a permutation【排列】† \(p\) of length \(n\) and a positive integer \(k≤n\).

In one operation, you:

Choose \(k\) distinct elements【不连续的元素】 \(p_{i1},p_{i2},…,p_{ik}\).

Remove them and then add them sorted in increasing order to the end of the permutation.

For example, if \(p=[2,5,1,3,4]\) and \(k=2\) and you choose \(5\) and \(3\) as the elements for the operation, then \([2,5,1,3,4]→[2,1,4,3,5]\).

Find the minimum number of operations needed to sort the permutation in increasing order【递增次序】. It can be proven that it is always possible to do so.

† A permutation of length \(n\) is an array consisting of \(n\) distinct integers from \(1\) to \(n\) in arbitrary order. For example, \([2,3,1,5,4]\) is a permutation, but \([1,2,2]\) is not a permutation (2 appears twice in the array), and \([1,3,4]\) is also not a permutation (\(n=3\) but there is \(4\) in the array).

Input

The first line contains a single integer \(t (1≤t≤10^4)\) — the number of test cases. The description of test cases follows.

The first line of each test case contains two integers \(n\) and \(k (2≤n≤10^5, 1≤k≤n)\).

The second line of each test case contains \(n\) integers \(p_1,p_2,…,p_n (1≤pi≤n)\). It is guaranteed that \(p\) is a permutation.

It is guaranteed that the sum of n over all test cases does not exceed \(10^5\).

Output

For each test case output a single integer — the minimum number of operations needed to sort the permutation. It can be proven that it is always possible to do so.

Example

input

4

3 2

1 2 3

3 1

3 1 2

4 2

1 3 2 4

4 2

2 3 1 4

output

0

1

1

2

Note

In the first test case, the permutation is already sorted.

In the second test case, you can choose element \(3\), and the permutation will become sorted as follows: \([3,1,2]→[1,2,3]\).

In the third test case, you can choose elements \(3\) and \(4\), and the permutation will become sorted as follows: \([1,3,2,4]→[1,2,3,4]\).

In the fourth test case, it can be shown that it is impossible to sort the permutation in \(1\) operation. However, if you choose elements \(2\) and \(1\) in the first operation, and choose elements \(3\) and \(4\) in the second operation, the permutation will become sorted as follows: \([2,3,1,4]→[3,4,1,2]→[1,2,3,4]\).

原题链接

简述题意

  • 给出一个长度为\(n\)的不连续排列,通过每次移动\(k\)个数并排序放在排列的最后面,确保一定次数内一定可以使得排列正序,问最小操作数为几?

思路

  1. 如果需要最小化操作数,那么不需要移动的元素个数应该最大化,即找到{1,2,...}的maximal subsequence【最大子序列】的元素个数
  2. 我们可以在遍历过程中维护相对顺序来找到最大子序列的元素个数
  3. 结果是遍历一遍记录不满足相对顺序的个数除以每次可移动的个数向上取整
  4. 需要注意是:向上取整要先乘1.0,否则结果会先向下取整再向上取整

代码

点击查看代码
#include<iostream>
#include<cmath> #define endl '\n'
using namespace std;
typedef long long LL;
const int N = 1e6 + 10;
int k,t,n;
int a[N];
LL ans; int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
cin >> t; while(t -- ){
ans = 0;
cin >> n >> k;
for(int i = 1; i <= n; i ++)cin >> a[i];
int t = 0,m = 0;
for(int i = 1; i <= n; i ++){
if(a[i] != i - t){
m ++; //不满足相对顺序的数的个数
t ++; //维护相对顺序
}
}
cout << ceil(m * 1.0 / k) << endl; //注意:向上取整要先乘1.0,否则结果会先向下取整再向上取整
}
}

标准答案

点击查看代码
#include <bits/stdc++.h>	

#define all(x) (x).begin(), (x).end()
#define allr(x) (x).rbegin(), (x).rend()
#define gsize(x) (int)((x).size()) const char nl = '\n'; //简写换行
typedef long long ll;
typedef long double ld; using namespace std; void solve() {
int n, k;
cin >> n >> k;
vector<int> p(n); //动态数组
for (int i = 0; i < n; i++) cin >> p[i]; int c_v = 1;
for (int i = 0; i < n; i++) {
if (p[i] == c_v) c_v++;
} cout << (n - c_v + k) / k << nl;
} int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int T;
cin >> T;
while (T--) solve();
}

解题历程

  1. 考虑了相对顺序但是结果计算方式错误
  2. AC(46 ms,3900 KB) 【00:57 - 01:29】 //二次思考

经验总结

  1. 向上取整要先乘1.0,否则结果会先向下取整再向上取整
  2. 注意如何维护相对顺序
  3. 不要盲目模拟过程

B. Quick Sort【Codeforces Round #842 (Div. 2)】的更多相关文章

  1. A. Greatest Convex【Codeforces Round #842 (Div. 2)】

    A. Greatest Convex You are given an integer \(k\). Find the largest integer \(x\), where \(1≤x<k\ ...

  2. 【Codeforces Round #406 (Div. 2)】题解

    The Monster 签到题,算一下b+=a和d+=c,然后卡一下次数就可以了. Not Afraid 只要一组出现一对相反数就是安全的. Berzerk 题意:[1,n],两个人轮流走,谁能走到1 ...

  3. 【Codeforces Round #411 (Div. 1)】Codeforces 804C Ice cream coloring (DFS)

    传送门 分析 这道题做了好长时间,题意就很难理解. 我们注意到这句话Vertices which have the i-th (1 ≤ i ≤ m) type of ice cream form a ...

  4. 【Codeforces Round#279 Div.2】B. Queue

    这题看别人的.就是那么诚实.http://www.cnblogs.com/zhyfzy/p/4117481.html B. Queue During the lunch break all n Ber ...

  5. 【Codeforces Round #405 ( Div 2)】题解

    Bear and Big Brother 签到题,直接模拟就可以了. Bear and Friendship Condition 满足只能是每个朋友圈中每个人和其他人都是朋友,这样的边数的确定的. 然 ...

  6. 【Codeforces Round #404 (Div. 2)】题解

    A. Anton and Polyhedrons 直接统计+答案就可以了. #include<cstdio> #include<cstring> #include<alg ...

  7. 【Codeforces Round #518 (Div. 2)】

    A:https://www.cnblogs.com/myx12345/p/9847588.html B:https://www.cnblogs.com/myx12345/p/9847590.html ...

  8. 【Codeforces Round #506 (Div. 3) 】

    A:https://www.cnblogs.com/myx12345/p/9844334.html B:https://www.cnblogs.com/myx12345/p/9844368.html ...

  9. 【Codeforces Round #503 (Div. 2)】

    A:https://www.cnblogs.com/myx12345/p/9843198.html B:https://www.cnblogs.com/myx12345/p/9843245.html ...

随机推荐

  1. go-zero docker-compose搭建课件服务(四):生成Dockerfile

    0.转载 go-zero docker-compose 搭建课件服务(四):生成Dockerfile并在docker-compose中启动 0.1源码地址 https://github.com/liu ...

  2. 【MySQL】Navicat15 安装

    # Navicat安装` 提示`:鉴于之间已经出了MySQL的安装教程,在这了我也讲下,那个其实包含了两个知识点,既可以小白初次安装MySQL客户端,也面向想安装5.x和8.x两个版本的. --- @ ...

  3. CF39H

    前言 谁来给我讲讲九九乘法表啊. 以上菲克向. \(\sf{Solution}\) 看题上来就是数据范围 \(2\leq k\leq 10\) ,显然打表可以轻松水过,数据这么小,手算是没问题的啦. ...

  4. .NET性能系列文章二:Newtonsoft.Json vs. System.Text.Json

    微软终于追上了? 图片来自 Glenn Carstens-Peters Unsplash 欢迎来到.NET性能系列的另一章.这个系列的特点是对.NET世界中许多不同的主题进行研究.基准和比较.正如标题 ...

  5. 嵌入式-C语言基础:怎么样使得一个指针指向固定的区域?

    在学习单片机的时候,经常需要让一个指针指向固定的区域,这时候应该怎么操作? #include<stdio.h> int main() { int *p; int a =10; p=& ...

  6. Containerd 如何配置 Proxy?

    前言 在某些 air gap 场景中,往往需要离线或使用代理 (Proxy), 例如: 需要通过 Proxy pull 容器镜像: Docker Hub: docker.io Quay: quay.i ...

  7. Go语言核心36讲17

    在前面的文章中,我们已经提到过很多次"指针"了,你应该已经比较熟悉了.不过,我们那时大多指的是指针类型及其对应的指针值,今天我们讲的则是更为深入的内容. 让我们先来复习一下. ty ...

  8. IDEA提交任务到spark standalone集群

    参考文章: 在idea里面怎么远程提交spark任务到yarn集群 代码 注意setJars,提交的代码,要提前打好包.否则会报找不到类的错误 个人理解就相当于运行的main方法是起了一个spark- ...

  9. Training: Stegano I

    原题链接:http://www.wechall.net/challenge/training/stegano1/index.php 很明显,这是一道图像隐写题,因为他说的 我们右键图片,点击其他窗口打 ...

  10. C温故补缺(六):C反汇编常用的AT&Tx86语法

    C语言反汇编用到的AT&T x86汇编语法 参考:CSDN1,CSDN2 默认gcc -S汇编出的,以及反汇编出的,都是AT&T x86代码,可以用-masm=intel指定为inte ...