题面

1
9 4
4 1
1 5
1 2
3 2
3 6
6 7
6 8
9 6
0 1 0 1 0 0 1 0 1
3 2
7 3
4 0
9 5

YES
YES
NO
NO

题解

n <= 5000 可以用DP做

把答案都算出来存在一个数组f[x][y]中,表示当询问为 x 和 y 时能不能达到,查询时就可以直接访问了。

令dp[x][y][2]记录以 x 为根的子树中选 y 个点(包括 x ),最大的黑点数max以及最小的黑点数min,求出来后把 f[y][min~max] 全都赋为 1。

接下来我们要证明两个结论:

min~max中间的值都可取

考虑绿色的部分是最小值的联通子树,蓝色部分是最大值的联通子树(重合部分为渐变色)

只需要证明当我们从最小值过渡到最大值时,它是连续的就行,从最小值过渡到最大值,由于选的点数不变,一直为 y ,所以每次在绿色部分缩回一个点,蓝色部分扩张一个点,绿色部分会让累计黑点数减 1 或 0,蓝色部分会让累计黑点数加 1 或 0 ,所以每次变化会使累计数 +1,-1或不变,在整数上是连续的。

复杂度为O(n^2)

dp的转移实际上是在做树上背包,枚举儿子的时候每次是双层循环,第一层是前几个儿子子树累计的size,第二层是新的儿子子树的size,所以也就相当于在前几个儿子的所有子树中找一个点,再在新儿子子树中找一个点,然后在 lca 上也就是 x 上转移,那么宏观上来说就是每两个点计算一次,复杂度O(n^2),f 数组处理可以差分,也是O(n^2)。

最后,为了卡空间,我把最大值和最小值存在一个int中了。

CODE

#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 5005
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD1 = 1000000007;
const int sq = 10000;
int n,m,i,j,s,o,k;
vector<int> g[MAXN];
int f[MAXN][MAXN];
int dp[MAXN][MAXN];
int c[MAXN],son[MAXN];
void dfs(int x,int fa) {
for(int i = 0;i <= n;i ++) dp[x][i] = n+1;
dp[x][1] = c[x] * sq + c[x];
son[x] = 1;
for(int i = 0;i < (int)g[x].size();i ++) {
int y = g[x][i];
if(y != fa) {
dfs(y,x);
for(int k = son[x] + son[y];k > 1;k --) {
for(int j = max(1,k-son[x]);j <= son[y] && j < k;j ++) {
int dp0,dp1;
dp0 = min(dp[x][k]%sq,(dp[x][k-j]%sq) + (dp[y][j]%sq));
dp1 = max(dp[x][k]/sq,(dp[x][k-j]/sq) + (dp[y][j]/sq));
dp[x][k] = dp1 * sq + dp0;
}
}
son[x] += son[y];
}
}
for(int i = 1;i <= son[x];i ++) {
int ll = dp[x][i]%sq,rr = dp[x][i]/sq;
if(ll <= rr) f[i][ll] ++,f[i][rr+1] --;
}
return ;
}
int main() {
// freopen("tree.in","r",stdin);
// freopen("tree.out","w",stdout);
int T = read();
while(T --) {
n = read();m = read();
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
memset(dp,0,sizeof(dp));
memset(son,0,sizeof(son));
for(int i = 1;i <= n;i ++) g[i].clear();
for(int i = 1;i < n;i ++) {
s = read();o = read();
g[s].push_back(o);
g[o].push_back(s);
}
for(int i = 1;i <= n;i ++) {
c[i] = (bool)read();
}
dfs(1,0);
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= i;j ++) {
f[i][j] += f[i][j-1];
}
}
for(int i = 1;i <= m;i ++) {
s = read();o = read();
if(s == 0 && o == 0) printf("YES\n");
else if(s < 1 || s > n || o < 0 || o > s) printf("NO\n");
else printf(f[s][o] > 0 ? "YES\n":"NO\n");
}
ENDL;
}
return 0;
}

小A的树 - 树形DP的更多相关文章

  1. 牛客挑战赛30 小G砍树 树形dp

    小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...

  2. 【BZOJ5072】[Lydsy十月月赛]小A的树 树形DP

    [BZOJ5072][Lydsy十月月赛]小A的树 题解:考虑我们从一个联通块中替换掉一个点,导致黑点数量的变化最多为1.所以我们考虑维护对于所有的x,y的最大值和最小值是多少.如果询问的y在最大值和 ...

  3. bzoj 5072 小A的树 —— 树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 由于对于一个子树,固定有 j 个黑点,连通块大小是一个连续的范围: 所以记 f[i][ ...

  4. bzoj 5072 [Lydsy1710月赛]小A的树——树形dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 发现对于每个子树,黑点个数确定时,连通块的大小取值范围一定是一段区间:所以考虑只最小化 ...

  5. BZOJ5072:[Lydsy1710月赛]小A的树(树形DP)

    Description BZOJ只是扔了个下载链接 Solution 设$f[x][i]$表示$x$点选中$i$个黑点的最小连通块. 设$g[x][i]$表示$x$点选中$i$个黑点的最大连通块. 转 ...

  6. 51nod 1353 树 | 树形DP经典题!

    51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...

  7. 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP

    [BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...

  8. 【BZOJ-3572】世界树 虚树 + 树形DP

    3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1084  Solved: 611[Submit][Status ...

  9. 【BZOJ-2286】消耗战 虚树 + 树形DP

    2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2120  Solved: 752[Submit][Status] ...

随机推荐

  1. 合宙AIR105(二): 时钟设置和延迟函数

    目录 合宙AIR105(一): Keil MDK开发环境, DAP-Link 烧录和调试 合宙AIR105(二): 时钟设置和延迟函数 Air105 的时钟 高频振荡源 芯片支持使用内部振荡源, 或使 ...

  2. Bika LIMS 开源LIMS集——实验室检验流程概述及主页、面板

    主页 主页左侧为功能入口菜单.右侧含待办提醒,中间为工作区. 工作区功能将主要工作页面置于首页,便于用户操作. Dashboard 面板 系统面板 包括待排定的实验任务.实验中的任务数.复核/审核中的 ...

  3. BUUCTF-被嗅探的流量

    被嗅探的流量 提示告知是文件传输的流量,那进去过滤http流量包即可,找到一个upload目录的,并且是post方式即可,追踪http流即可发现flag

  4. 上线项目之局域网上线软件使用-----phpStudy

    上面的图片是phpStudy的软件截图.那么你在哪里会下到呢?链接: https://pan.baidu.com/s/1lvX9jY_K6gGkMOqo76p4nA 提取码: h1it 复制这段内容后 ...

  5. Java实用类(五) -Math类和指定范围的随机数

    1.Math类 java.lang.Math类提供了常用的数学运算方法和两个静态常量E(自然对数的底数) 和PI(圆周率) // 绝对值 System.out.println(Math.abs(-3. ...

  6. 由ASP.NET Core根据路径下载文件异常引发的探究

    前言 最近在开发新的项目,使用的是ASP.NET Core6.0版本的框架.由于项目中存在文件下载功能,没有使用类似MinIO或OSS之类的分布式文件系统,而是下载本地文件,也就是根据本地文件路径进行 ...

  7. mysql中in的用法详解

    一.基础用法 mysql中in常用于where表达式中,其作用是查询某个范围内的数据. select * from where field in (value1,value2,value3,-) 当 ...

  8. tail -f 、tail -F、tailf的区别

    三者经常在工作中会使用到,以下是三条命令的区别,帮忙大家理解:1.tail -f 等同于--follow=descriptor,根据文件描述符进行追踪,当文件改名或被删除,追踪停止,但是不是断开. 2 ...

  9. 【Nim 游戏】 学习笔记

    前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...

  10. P6622 信号传递 做题感想

    题目链接 前言 在这里分享两种的做法. 一种是我第一直觉的 模拟退火.(也就是骗分) 还有一种是看题解才搞懂的神仙折半搜索加上 dp . 模拟退火 众所周知,模拟退火 是我这种没脑子选手用来骗分的好算 ...