小A的树 - 树形DP
题面

1
9 4
4 1
1 5
1 2
3 2
3 6
6 7
6 8
9 6
0 1 0 1 0 0 1 0 1
3 2
7 3
4 0
9 5

YES
YES
NO
NO
题解
n <= 5000 可以用DP做
把答案都算出来存在一个数组f[x][y]中,表示当询问为 x 和 y 时能不能达到,查询时就可以直接访问了。
令dp[x][y][2]记录以 x 为根的子树中选 y 个点(包括 x ),最大的黑点数max以及最小的黑点数min,求出来后把 f[y][min~max] 全都赋为 1。
接下来我们要证明两个结论:
min~max中间的值都可取
考虑绿色的部分是最小值的联通子树,蓝色部分是最大值的联通子树(重合部分为渐变色)

只需要证明当我们从最小值过渡到最大值时,它是连续的就行,从最小值过渡到最大值,由于选的点数不变,一直为 y ,所以每次在绿色部分缩回一个点,蓝色部分扩张一个点,绿色部分会让累计黑点数减 1 或 0,蓝色部分会让累计黑点数加 1 或 0 ,所以每次变化会使累计数 +1,-1或不变,在整数上是连续的。
复杂度为O(n^2)
dp的转移实际上是在做树上背包,枚举儿子的时候每次是双层循环,第一层是前几个儿子子树累计的size,第二层是新的儿子子树的size,所以也就相当于在前几个儿子的所有子树中找一个点,再在新儿子子树中找一个点,然后在 lca 上也就是 x 上转移,那么宏观上来说就是每两个点计算一次,复杂度O(n^2),f 数组处理可以差分,也是O(n^2)。
最后,为了卡空间,我把最大值和最小值存在一个int中了。
CODE
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 5005
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD1 = 1000000007;
const int sq = 10000;
int n,m,i,j,s,o,k;
vector<int> g[MAXN];
int f[MAXN][MAXN];
int dp[MAXN][MAXN];
int c[MAXN],son[MAXN];
void dfs(int x,int fa) {
for(int i = 0;i <= n;i ++) dp[x][i] = n+1;
dp[x][1] = c[x] * sq + c[x];
son[x] = 1;
for(int i = 0;i < (int)g[x].size();i ++) {
int y = g[x][i];
if(y != fa) {
dfs(y,x);
for(int k = son[x] + son[y];k > 1;k --) {
for(int j = max(1,k-son[x]);j <= son[y] && j < k;j ++) {
int dp0,dp1;
dp0 = min(dp[x][k]%sq,(dp[x][k-j]%sq) + (dp[y][j]%sq));
dp1 = max(dp[x][k]/sq,(dp[x][k-j]/sq) + (dp[y][j]/sq));
dp[x][k] = dp1 * sq + dp0;
}
}
son[x] += son[y];
}
}
for(int i = 1;i <= son[x];i ++) {
int ll = dp[x][i]%sq,rr = dp[x][i]/sq;
if(ll <= rr) f[i][ll] ++,f[i][rr+1] --;
}
return ;
}
int main() {
// freopen("tree.in","r",stdin);
// freopen("tree.out","w",stdout);
int T = read();
while(T --) {
n = read();m = read();
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
memset(dp,0,sizeof(dp));
memset(son,0,sizeof(son));
for(int i = 1;i <= n;i ++) g[i].clear();
for(int i = 1;i < n;i ++) {
s = read();o = read();
g[s].push_back(o);
g[o].push_back(s);
}
for(int i = 1;i <= n;i ++) {
c[i] = (bool)read();
}
dfs(1,0);
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= i;j ++) {
f[i][j] += f[i][j-1];
}
}
for(int i = 1;i <= m;i ++) {
s = read();o = read();
if(s == 0 && o == 0) printf("YES\n");
else if(s < 1 || s > n || o < 0 || o > s) printf("NO\n");
else printf(f[s][o] > 0 ? "YES\n":"NO\n");
}
ENDL;
}
return 0;
}
小A的树 - 树形DP的更多相关文章
- 牛客挑战赛30 小G砍树 树形dp
小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...
- 【BZOJ5072】[Lydsy十月月赛]小A的树 树形DP
[BZOJ5072][Lydsy十月月赛]小A的树 题解:考虑我们从一个联通块中替换掉一个点,导致黑点数量的变化最多为1.所以我们考虑维护对于所有的x,y的最大值和最小值是多少.如果询问的y在最大值和 ...
- bzoj 5072 小A的树 —— 树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 由于对于一个子树,固定有 j 个黑点,连通块大小是一个连续的范围: 所以记 f[i][ ...
- bzoj 5072 [Lydsy1710月赛]小A的树——树形dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 发现对于每个子树,黑点个数确定时,连通块的大小取值范围一定是一段区间:所以考虑只最小化 ...
- BZOJ5072:[Lydsy1710月赛]小A的树(树形DP)
Description BZOJ只是扔了个下载链接 Solution 设$f[x][i]$表示$x$点选中$i$个黑点的最小连通块. 设$g[x][i]$表示$x$点选中$i$个黑点的最大连通块. 转 ...
- 51nod 1353 树 | 树形DP经典题!
51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...
- 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...
- 【BZOJ-3572】世界树 虚树 + 树形DP
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1084 Solved: 611[Submit][Status ...
- 【BZOJ-2286】消耗战 虚树 + 树形DP
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2120 Solved: 752[Submit][Status] ...
随机推荐
- ubuntu下连microsoft sql server解决方案
shell for MSSQL: https://github.com/dbcli/mssql-cli mssql-cli -S 127.0.0.1,1433 -d testDB -U myuser ...
- BUUCTF-九连环
九连环 这题还是稍微有点难度的 使用16进制打开发现压缩包,用binwalk分离看看 分离得到的压缩包同样16进制看看 可以发现多个压缩包,这种情况应该是伪加密的方式,但是直接使用修复压缩包的方式没法 ...
- vue基本原理
当一个Vue实例创建时,Vue会遍历data中的属性,用Object.defineProperty(vue3.0使用proxy)将它们转为getter/setter,并且在内部追踪相关依赖,在属性被访 ...
- jenkins安装配置及发布
1. yum install -y lrzsz vim net-tools 2. 下载jdk-8u131-linux-x64.tar.gz http://www.oracle.com/technetw ...
- openssl客户端编程:一个不起眼的函数导致的SSL会话失败问题
我们目前大部分使用的openssl库还是基于TLS1.2协议的1.0.2版本系列,如果要支持更高的TLS1.3协议,就必须使用openssl的1.1.1版本或3.0版本.升级openssl库有可能会导 ...
- Unity-A-Star寻路算法
最短路径 将地图存成二维数组,通过行列查找: 每一步都查找周围四个方向,或者八方向的所有点,放入开表: 是否边缘 是否障碍 是否已经在确定的路线中 计算每个方向上路径消耗,一般斜着走消耗小,收益大: ...
- 用python随随便便做一个二维码叭~~~
Python是目前最好的编程语言之一.由于其可读性和对初学者的友好性,已被广泛使用. 那么要想学会并掌握Python,可以实战的练习项目是必不可少的. 接下来,我将给大家介绍非常实用的Python项目 ...
- 11.2 Android Studio如何切换主题和更改字体
如何进入设置? 全平台启动界面 Configure-Preferences 主界面 Windows版本:File-Settings Mac版本:Android Studio-Preferences 外 ...
- 步态识别《GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition》2018 CVPR
Motivation: 步态可被当作一种可用于识别的生物特征在刑侦或者安全场景发挥重要作用.但是现有的方法要么是使用步态模板(能量图与能量熵图等)导致时序信息丢失,要么是要求步态序列连续,导致灵活性差 ...
- 蒸腾量与蒸散量(ET)数据、潜在蒸散量、实际蒸散量数据、气温数据、降雨量数据
数据下载链接:数据下载链接 引言 多种卫星遥感数据反演地表蒸腾与蒸散率(ET)产品是地理遥感生态网推出的生态环境类数据产品之一,产品包括2000-2009年三个波段RGB数据,值域0-252之 ...