论文信息

论文标题:Debunking Rumors on Twitter with Tree Transformer
论文作者:Jing Ma、Wei Gao
论文来源:2020,COLING
论文地址:download 
论文代码:download

1 Introduction

  出发点:Existing conversation-based techniques for rumor detection either just strictly follow tree edges or treat all the posts fully-connected during feature learning.

  创新点:Propose a novel detection model based on tree transformer to better utilize user interactions in the dialogue where post-level self-attention plays the key role for aggregating the intra-/inter-subtree stances.

  例子:以 PLAN 模型为例子——一种帖子之间全连接的例子

  

  结论:Post 之间全连接的模型只适合浅层模型,并不适合深层模型,这是由于 Post 一般只和其 Parent 相关吗,全连接导致 Post 之间的错误连接加重。

2 Tree Transformer Model

  总体框架如下:
  

2.1 Token-Level Tweet Representation

  Transformer encoder 框架:

    

  给定一条表示为 word sequence  $x_{i}=\left(w_{1} \cdots w_{t} \cdots w_{\left|x_{i}\right|}\right)$ 的推文,每个 $w_{t} \in \mathbb{R}^{d}$ 是一个 $d$ 维向量,可以用预先训练的单词嵌入初始化。我们使用多头自注意网络(MH-SAN)将每个 $w_{i}$ 映射到一个固定大小的隐藏向量中。MH-SAN 的核心思想是共同关注来自不同位置的不同表示子空间的单词。更具体地说,MH-SAN 首先将输入字序列 $x_i$ 转换为具有不同线性投影的多个子空间:

    $Q_{i}^{h}, K_{i}^{h}, V_{i}^{h}=x_{i} \cdot W_{Q}^{h}, \quad x_{i} \cdot W_{K}^{h}, \quad x_{i} \cdot W_{V}^{h} \quad\quad\quad(1)$

  其中,$\left\{Q_{i}^{h}, K_{i}^{h}, V_{i}^{h}\right\}$ 分别为 query、key 和 value representations,$\left\{W_{Q}^{h}, W_{K}^{h}, W_{V}^{h}\right\} $ 表示与第 $h$ 个头关联的参数矩阵。然后,应用 attention function 来生成输出状态。

    $O_{i}^{h}=\operatorname{softmax}\left(\frac{Q_{i}^{h} \cdot K_{i}^{h^{\top}}}{\sqrt{d_{h}}}\right) \cdot V_{i}^{h}  \quad\quad\quad(2)$

  其中,$\sqrt{d_{h}}$ 是 放缩因子,$d_{h}$ 表示第 $h$ 个头的子空间的维数。最后,表示的输出可以看作是所有头 $O_{i}=\left[O_{i}^{1}, O_{i}^{2}, \cdots, O_{i}^{n}\right] \in   \mathbb{R}^{\left|x_{i}\right| \times d}$ 的连接,$n$ 为头数,然后是一个归一化层(layerNorm)和前馈网络(FFN)。

    $\begin{array}{l}B_{i}=\operatorname{layerNorm}\left(O_{i} \cdot W_{B}+O_{i}\right) \\H_{i}=\operatorname{FFN}\left(B_{i} \cdot W_{S}+B_{i}\right)\end{array}  \quad\quad\quad(3)$

  其中 $H_{i}=\left[h_{1} ; \ldots ; h_{\left|x_{i}\right|}\right] \in \mathbb{R}^{\left|x_{i}\right| \times d}$ 是表示 tweet $x_i$ 中所有单词的矩阵,$W_{B}$ 和 $W_{h}$ 包含 transformation 的权值。最后,我们通过 maxpooling 所有相关 words 的向量,得到了 $x_i$ 的表示:

    $s_{i}=\max -\operatorname{pooling}\left(h_{1}, \ldots, h_{\left|x_{i}\right|}\right) \quad\quad\quad(4)$

  其中,$s_{i} \in \mathbb{R}^{1 \times d}$ 为 $d$ 维向量,$|\cdot|$ 为单词数。

2.2 Post-Level Tweet Representation

  Why we choose Cross-check all the posts in the same subtree to enhance the representation learning:

  (1) posts are generally short in nature thus the stance expressed in each node is closely correlated with the responsive context;

  (2) posts in the same subtree direct at the individual opinion expressed in the root of the subtree.

  (3) Coherent opinions can be captured by comparing ALL responsive posts in the same subtree, that lower weight the incorrect information.
 
Bottom-Up Transformer

  Figure 2(c) 说明了本文的 tree transformer 结构,它 cross-check 从底部子树到上部子树的 post。具体来说,给定一个有根于 $x_j$ 的子树,假设 $\mathcal{V}(j)=\left\{x_{j}, \ldots, x_{k}\right\}$ 表示子树中的节点集合,即 $x_j$ 及其直接响应节点。然后,我们在 $\mathcal{V}(j)$ 上应用一个 post-level subtree attention(a transformer-based block as shown in Figure 2(b)),以得到 $\mathcal{V}(j)$ 中每个节点的细化表示:

    $\left[s_{j}^{\prime} ; \ldots ; s_{k}^{\prime}\right]=\operatorname{TRANS}\left(\left[s_{j} ; \ldots ; s_{k}\right], \Theta_{T}\right) \quad\quad\quad(5)$

  其中,$TRANS  (\cdot)$ 是具有如 Eq. 2-4 中所示的相似形式的 transform function,$\Theta_{T}$ 包含了 transformer 的参数。因此,$s_{*}^{\prime}$ 是基于子树的上下文得到的 $s_{*}$ 的细化表示。请注意,每个节点都可以被视为不同子树中的父节点或子节点,例如,在 Figure 2(a) 中,$x_{2}$ 可以是 $T\left(x_{2}\right)$ 的父节点,也可以是 $T(r)$ 的子节点。因此,一部分的节点在我们的 from bottom subtree to upper subtree 模型中结果两次层次细化:(1)通过与父节点相比来捕获立场 stance,(2) 通过关注邻居节点来获得较低权重的不准确信息,例如,一个父母支持一个错误的声明可能会细化如果大多数响应驳斥父节点。

Top-Down Transformer

  Top-down transformer 的方向与 bottom-up transformer 相反,沿着信息传播的方向,其架构如 Figure 2 (d) 所示。同样的,其学习到的表示也通过捕获立场和自我纠正上下文信息得到增强。

2.3 The overall Model

  为了共同捕获整个树中表达的观点,我们利用一个注意力层来选择具有准确信息的重要帖子,这是基于细化的节点表示而获得的。这将产生:

    $\begin{array}{l}\alpha_{i}=\frac{\exp \left(s_{i}^{\prime} \cdot \mu^{\top}\right)}{\sum\limits_{j} \exp \left(s_{j}^{\prime} \cdot \mu^{\top}\right)} \\\tilde{s}=\sum\limits_{i} \alpha_{i} \cdot s_{i}^{\prime}\end{array}\quad\quad\quad(6)$

  其中,$s_{i}^{\prime}$ 由 Bottom-Up Transformer 或 Top-Down Transformer 得到,$\mu \in \mathbb{R}^{1 \times d}$ 是注意力机制的参数。这里的 $\alpha_{i}$ 是节点 $x_i$ 的注意权值,用于生成整个树的表示 $\tilde{s}$。最后,我们使用一个全连接的输出层来预测谣言类上的概率分布。

  $\hat{y}=\operatorname{softmax}\left(V_{o} \cdot \tilde{s}+b_{o}\right) \quad\quad\quad(7)$

  其中,$V_{o}$ 和 $b_{o}$ 是输出层中的权值和偏差。

  此外,还有一种直接的方法可以将 Bottom-Up transformer 与 Top-Down transformer 的树表示连接起来,以获得更丰富的树表示,然后将其输入上述的 $softmax (\cdot)$ 函数进行谣言预测。

  我们所有的模型都经过训练,以最小化预测的概率分布和地面真实值的概率分布之间的平方误差:

    $L(y, \hat{y})=\sum_{n=1}^{N} \sum_{c=1}^{C}\left(y_{c}-\hat{y}_{c}\right)^{2}+\lambda\|\Theta\|_{2}^{2} \quad\quad\quad(8)$

  其中 $y_{c}$ 是 ground-truth label ,$\hat{y}_{c}$ 是类C的预测概率,$N$ 是训练的树数,C 是类的数量,$\|.\|_{2}$ 是所有模型参数 $\Theta$ 上的 $L_{2}$ 正则化项,$\lambda$ 是权衡系数。

3 Experiments

Datasets

  使用 TWITTER 和 PHEME 数据集进行实验,按照传播树深度将两个数据集划分为 TWITTER-S (PHEME-S)和 TWITTER-D (PHEME-D) 一共4个数据集,下表展示数据集的统计情况:

  

Experiment

  

Early Rumor Detection Performance

  

谣言检测()——《Debunking Rumors on Twitter with Tree Transformer》的更多相关文章

  1. 谣言检测——《MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection》

    论文信息 论文标题:MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection论文作者:Jiaqi Zheng, ...

  2. 论文解读(FedGAT)《Federated Graph Attention Network for Rumor Detection》

    论文信息 论文标题:Federated Graph Attention Network for Rumor Detection论文作者:Huidong Wang, Chuanzheng Bai, Ji ...

  3. 谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》

    论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erx ...

  4. 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》

    论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...

  5. 谣言检测(PLAN)——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

    论文信息 论文标题:Interpretable Rumor Detection in Microblogs by Attending to User Interactions论文作者:Ling Min ...

  6. 谣言检测(RDEA)《Rumor Detection on Social Media with Event Augmentations》

    论文信息 论文标题:Rumor Detection on Social Media with Event Augmentations论文作者:Zhenyu He, Ce Li, Fan Zhou, Y ...

  7. 谣言检测()《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

    论文信息 论文标题:Rumor Detection with Self-supervised Learning on Texts and Social Graph论文作者:Yuan Gao, Xian ...

  8. 目标检测系列 --- RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation Tech report

    目标检测系列 --- RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation Te ...

  9. 谣言检测——(PSA)《Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks》

    论文信息 论文标题:Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks论文作者:Jiayin ...

随机推荐

  1. Java学习 (四)基础篇 Java基础语法

    注释&标识符&关键字 注释 注释并不会被执行,其主要目的用于解释当前代码 书写注释是一个非常好的习惯,大厂要求之一 public class hello { public static ...

  2. 学习javascript知识

    开始学习了 努力----努力----努力 从今天开始 绝不 三天打鱼两天晒网 先把基础再巩固一下

  3. vue脚手架创建项目后使用路由报错Object(...) is not a function问题

    在这之前我做过的vue项目没有这种问题,今天突然出现这个问题,也检查了很久的代码,最后解决我也不知道我是哪一步做错了 首先我是创建的vue2项目,基本操作跟平常一样,在运用路由跳转的时候遇到这个问题 ...

  4. V8中的快慢属性(图文分解更易理解)

    出于好奇:js中使用json存数据查找速度快,还是使用数组存数据查找快? 探究V8中对象的实现原理,熟悉数组索引属性.命名属性.对象内属性.隐藏类.描述符数组.快慢属性等等. D8调试工具使用请来这里 ...

  5. JavaScript基础回顾知识点记录6-操作元素样式和事件对象(介绍基本使用)

    js 中 操作元素样式 通过js修改元素内联样式(设置和读取的都是内联样式) 获取当前元素显示的样式 <html> <head> <meta charset=" ...

  6. 虚拟机kali端口映射外网vps

    前言:我们常用的kali系统一般都是在虚拟机里面运行,这样在真实环境中外网是访问不到你的kali攻击机的,这时候我们就需要给kali映射一个外网vps. 一.在vps启动frp 服务端 安装frp并解 ...

  7. java基础———注释

    注释是写给读者看的,并不会被执行! 单行注释 以 //开头 例如://注释内容              可以注释一行文本 多行注释 以/*开头     以 */结束 例如:/*注释内容*/      ...

  8. k8s驱逐篇(3)-kubelet节点压力驱逐-源码分析篇

    kubelet节点压力驱逐-概述 kubelet监控集群节点的 CPU.内存.磁盘空间和文件系统的inode 等资源,根据kubelet启动参数中的驱逐策略配置,当这些资源中的一个或者多个达到特定的消 ...

  9. JAVA反序列化漏洞修复解决方法

    MyObject类建立了Serializable模块,而且重新写过了readObject()变量,仅有建立了Serializable模块的类的目标才能够被实例化,沒有建立此模块的类将无法使他们的任意状 ...

  10. Unity2D-Dash && SpeedUp

    ​ Introduction 原理: 角色位置改变时,每隔一段时间记录角色的位置,然后在记录的位置上放置一个图片,在图片出现之后过一段时间就让图片渐渐消失 简述实现步骤: 1.在Unity中Creat ...