链接:

https://codeforces.com/contest/1228/problem/D

题意:

You have a simple undirected graph consisting of n vertices and m edges. The graph doesn't contain self-loops, there is at most one edge between a pair of vertices. The given graph can be disconnected.

Let's make a definition.

Let v1 and v2 be two some nonempty subsets of vertices that do not intersect. Let f(v1,v2) be true if and only if all the conditions are satisfied:

There are no edges with both endpoints in vertex set v1.
There are no edges with both endpoints in vertex set v2.
For every two vertices x and y such that x is in v1 and y is in v2, there is an edge between x and y.
Create three vertex sets (v1, v2, v3) which satisfy the conditions below;

All vertex sets should not be empty.
Each vertex should be assigned to only one vertex set.
f(v1,v2), f(v2,v3), f(v3,v1) are all true.
Is it possible to create such three vertex sets? If it's possible, print matching vertex set for each vertex.

思路:

先染色, 然后根据度数判断是否满足每个都联通.

代码:

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5+10; vector<int> G[MAXN];
int col[MAXN], deg[MAXN];
int n, m; int main()
{
cin >> n >> m;
int u, v;
for (int i = 1;i <= m;i++)
{
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
deg[u]++;
deg[v]++;
}
for (int i = 1;i <= n;i++)
col[i] = 1;
for (int i = 1;i <= n;i++)
{
if (col[i] == 1)
{
for (int j = 0; j < G[i].size(); ++j)
{
if (col[G[i][j]] == 1)
col[G[i][j]] = 2;
}
}
}
for (int i = 1;i <= n;i++)
{
if (col[i] == 2)
{
for (int j = 0; j < G[i].size(); ++j)
{
if (col[G[i][j]] == 2)
col[G[i][j]] = 3;
}
}
}
vector<int> Num[4];
for (int i = 1;i <= n;i++)
Num[col[i]].push_back(i);
if (Num[3].size() == 0 || Num[2].size() == 0 || Num[1].size() == 0)
{
puts("-1");
return 0;
}
bool flag = true;
for (int i = 1;i <= n;i++)
{
int sum = 0;
for (int j = 1;j <= 3;j++)
{
if (j == col[i])
continue;
sum += Num[j].size();
}
if (deg[i] != sum)
{
flag = false;
break;
}
}
if (!flag)
puts("-1");
else
{
for (int i = 1;i <= n;i++)
cout << col[i] << ' ';
}
puts(""); return 0;
}

Codeforces Round #589 (Div. 2) D. Complete Tripartite(染色)的更多相关文章

  1. Codeforces Round #589 (Div. 2) D. Complete Tripartite(模拟)

    题意:给你n个点 和 m条边 问是否可以分成三个集合 使得任意两个集合之间的任意两个点都有边 思路:对于其中一个集合v1 我们考虑其中的点1 假设点u和1无边 那么我们可以得到 u一定和点1在一个集合 ...

  2. Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理

    Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理 [Problem Description] 在\(n\times n\) ...

  3. Codeforces Round #589 (Div. 2)

    目录 Contest Info Solutions A. Distinct Digits B. Filling the Grid C. Primes and Multiplication D. Com ...

  4. Codeforces Round #589 (Div. 2) (e、f没写)

    https://codeforces.com/contest/1228/problem/A A. Distinct Digits 超级简单嘻嘻,给你一个l和r然后寻找一个数,这个数要满足的条件是它的每 ...

  5. 【Codeforces Round #589 (Div. 2) D】Complete Tripartite

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 其实这道题感觉有点狗. 思路大概是这样 先让所有的点都在1集合中. 然后随便选一个点x,访问它的出度y 显然tag[y]=2 因为和他相连了嘛 ...

  6. Codeforces Round 589 (Div. 2) 题解

    Is that a kind of fetishism? No, he is objectively a god. 见识了一把 Mcdic 究竟出题有多神. (虽然感觉还是吹过头了) 开了场 Virt ...

  7. Codeforces Round #589 (Div. 2) E. Another Filling the Grid(DP, 组合数学)

    链接: https://codeforces.com/contest/1228/problem/E 题意: You have n×n square grid and an integer k. Put ...

  8. Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)

    链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...

  9. Codeforces Round #589 (Div. 2) B. Filling the Grid

    链接: https://codeforces.com/contest/1228/problem/B 题意: Suppose there is a h×w grid consisting of empt ...

随机推荐

  1. LoadRunner编程之文件的操作

    这篇文章主要写下LoadRunner下如何进行文件的操作. 1,文件的声明 LoadRunner不支持FILE数据类型,所以在LoadRunner中用int来声明一个文件: int MyFile; 2 ...

  2. Hadoop介绍与安装

    前言 最近想学习下大数据,有点急于求成,于是去网上找了各种培训机构的视频,发现大都质量不佳,理论基本不说或者简单讲下,然后教你照猫画虎的敲代码,出了问题都没法分析.最后还是找了厦门大学的公开课从理论开 ...

  3. Comet OJ Contest #15 D. 双十一特惠(困难版)

    以 $d(x)$ 表示正整数 $x$ 的十进制表示的数位之和.熟知下列关于 $d(x)$ 的结论: $d(x) \equiv x \pmod{9}$.从而对于任意正整数列 $a_1, a_2, \do ...

  4. 【AtCoder】ARC063

    ARC063 C - 一次元リバーシ / 1D Reversi 不同的颜色段数-1 #include <bits/stdc++.h> #define fi first #define se ...

  5. 序列化,os,sys,hashlib,collections

    序列化,os,sys,hashlib,collections 1.序列化 什么是序列化?序列化的本质就是将一种数据结构(如字典,列表)等转换成一个特殊的序列(字符串或者bytes)的过程就叫做序列化. ...

  6. selenium登录百度

    from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.s ...

  7. C库函数:scanf、fscanf、printf、fprintf、sprintf、 snprintf

    1. scanf 函数原型 int scanf(const char *format, ...);  功能:从标准输入 stdin 读取格式化输入. 2.fscanf 函数原型 int fscanf( ...

  8. sleep(0)、usleep(0)与sched_yield() 调度

    结论: 如果你是为了耗掉一个机器周期 ,那直接asm ("nop") , 如果是为了让权,建议把 所有使用 usleep(0)  换成 sched_yield() ; 最近发现很多 ...

  9. HTML form表单中action的正确写法

    我的Java Web Application的context是myweb,即http://localhost:8080/myweb/index.jsp是欢迎页. 现在我的一个Controller的映射 ...

  10. BBPlus团队ALPHA冲刺博客(肖文恒)

    ALPHA冲刺博客 第一天:https://www.cnblogs.com/bbplus/p/11931039.html 第二天:https://www.cnblogs.com/bbplus/p/11 ...