链接:

https://codeforces.com/contest/1228/problem/D

题意:

You have a simple undirected graph consisting of n vertices and m edges. The graph doesn't contain self-loops, there is at most one edge between a pair of vertices. The given graph can be disconnected.

Let's make a definition.

Let v1 and v2 be two some nonempty subsets of vertices that do not intersect. Let f(v1,v2) be true if and only if all the conditions are satisfied:

There are no edges with both endpoints in vertex set v1.
There are no edges with both endpoints in vertex set v2.
For every two vertices x and y such that x is in v1 and y is in v2, there is an edge between x and y.
Create three vertex sets (v1, v2, v3) which satisfy the conditions below;

All vertex sets should not be empty.
Each vertex should be assigned to only one vertex set.
f(v1,v2), f(v2,v3), f(v3,v1) are all true.
Is it possible to create such three vertex sets? If it's possible, print matching vertex set for each vertex.

思路:

先染色, 然后根据度数判断是否满足每个都联通.

代码:

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5+10; vector<int> G[MAXN];
int col[MAXN], deg[MAXN];
int n, m; int main()
{
cin >> n >> m;
int u, v;
for (int i = 1;i <= m;i++)
{
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
deg[u]++;
deg[v]++;
}
for (int i = 1;i <= n;i++)
col[i] = 1;
for (int i = 1;i <= n;i++)
{
if (col[i] == 1)
{
for (int j = 0; j < G[i].size(); ++j)
{
if (col[G[i][j]] == 1)
col[G[i][j]] = 2;
}
}
}
for (int i = 1;i <= n;i++)
{
if (col[i] == 2)
{
for (int j = 0; j < G[i].size(); ++j)
{
if (col[G[i][j]] == 2)
col[G[i][j]] = 3;
}
}
}
vector<int> Num[4];
for (int i = 1;i <= n;i++)
Num[col[i]].push_back(i);
if (Num[3].size() == 0 || Num[2].size() == 0 || Num[1].size() == 0)
{
puts("-1");
return 0;
}
bool flag = true;
for (int i = 1;i <= n;i++)
{
int sum = 0;
for (int j = 1;j <= 3;j++)
{
if (j == col[i])
continue;
sum += Num[j].size();
}
if (deg[i] != sum)
{
flag = false;
break;
}
}
if (!flag)
puts("-1");
else
{
for (int i = 1;i <= n;i++)
cout << col[i] << ' ';
}
puts(""); return 0;
}

Codeforces Round #589 (Div. 2) D. Complete Tripartite(染色)的更多相关文章

  1. Codeforces Round #589 (Div. 2) D. Complete Tripartite(模拟)

    题意:给你n个点 和 m条边 问是否可以分成三个集合 使得任意两个集合之间的任意两个点都有边 思路:对于其中一个集合v1 我们考虑其中的点1 假设点u和1无边 那么我们可以得到 u一定和点1在一个集合 ...

  2. Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理

    Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理 [Problem Description] 在\(n\times n\) ...

  3. Codeforces Round #589 (Div. 2)

    目录 Contest Info Solutions A. Distinct Digits B. Filling the Grid C. Primes and Multiplication D. Com ...

  4. Codeforces Round #589 (Div. 2) (e、f没写)

    https://codeforces.com/contest/1228/problem/A A. Distinct Digits 超级简单嘻嘻,给你一个l和r然后寻找一个数,这个数要满足的条件是它的每 ...

  5. 【Codeforces Round #589 (Div. 2) D】Complete Tripartite

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 其实这道题感觉有点狗. 思路大概是这样 先让所有的点都在1集合中. 然后随便选一个点x,访问它的出度y 显然tag[y]=2 因为和他相连了嘛 ...

  6. Codeforces Round 589 (Div. 2) 题解

    Is that a kind of fetishism? No, he is objectively a god. 见识了一把 Mcdic 究竟出题有多神. (虽然感觉还是吹过头了) 开了场 Virt ...

  7. Codeforces Round #589 (Div. 2) E. Another Filling the Grid(DP, 组合数学)

    链接: https://codeforces.com/contest/1228/problem/E 题意: You have n×n square grid and an integer k. Put ...

  8. Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)

    链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...

  9. Codeforces Round #589 (Div. 2) B. Filling the Grid

    链接: https://codeforces.com/contest/1228/problem/B 题意: Suppose there is a h×w grid consisting of empt ...

随机推荐

  1. java学习(东软睿道)2019-09-06(预课)《随堂笔记》

    2019-09-06 13:19:56 1.变量:java  名称 2.服务器server 客户端client                         uft8   ascll 3.Java ...

  2. 考研路茫茫——空调教室HDU2242(Tarjan缩点)

    题意:http://acm.hdu.edu.cn/showproblem.php?pid=2242 给你一个图,问你缩完点树上割边的做小绝对值差. 思路: 这题核算起来整整做了我一天(即24个小时)! ...

  3. axios拦截器的介绍

    interceptors 拦截器 拦截器一般做什么? 1. 修改请求头的一些配置项 2. 给请求的过程添加一些请求的图标 3. 给请求添加参数 拦截器的基本语法: 拦截器分为全局拦截器和局部拦截器 全 ...

  4. springboot由于bean加载顺序导致的问题

    先记录现象: dubbo整合zipkin时,我的配置文件是这样的 @Bean("okHttpSender") public OkHttpSenderFactoryBean okHt ...

  5. git基本操作及实用工具

    //git1.安装客户端git Git-2.9.3-rebase-i-64-bit.exe2.安装完成后打开git bashgit config --global user.name "li ...

  6. python+django学习一

    pycharm破解地址:https://blog.csdn.net/qq_32811489/article/details/78636049 按照视频写代码,记录关键的地方方便自己记忆, 视频教程地址 ...

  7. 为Vim 添加vimgdb支持

    为Vim 添加vimgdb支持 1.    下载最新的vim74的源码包 wget ftp://ftp.vim.org/pub/vim/unix/vim-7.4.tar.bz2 2.下载vimgdb- ...

  8. 1 bootstrapValidator使用

    1 如何使用 引入 <link href="bootstrapValidator.min.css" rel="stylesheet"> css文件 ...

  9. Linux安装配置go运行环境

    1. 下载go,解压 gz包 wget https://storage.googleapis.com/golang/go1.7.5.linux-amd64.tar.gz tar zxvf go1.7. ...

  10. 使用nodejs实现OData的batch操作在Marketing Cloud里读取contact信息

    我们先来看看Marketing Cloud系统里的contact信息: 一共1218374条数据. 我们用如下的nodejs代码通过OData来获取这些数据: var request = requir ...