BZOJ 1867 [Noi1999]钉子和小球 DP
想状态和钉子的位置如何匹配想了半天。。。后来发现不是一样的吗$qwq$
思路:当然是$DP$啦
提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$)
题解:
若有钉子,左右各乘$\frac{1}{2}$转移,否则,向下两层直接转移。
对于分数,分别维护分子和分母,然后加起来的时候,记着一定要写成
up[i][j]=up[i][j]*(b/G)+a*(dn[i][j]/G);
dn[i][j]=dn[i][j]*(b/G);
而非
up[i][j]=up[i][j]*b/G+a*dn[i][j]/G;
dn[i][j]=dn[i][j]*b/G;
(好吧也是我傻$qwq$)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define ull unsigned long long
#define ll long long
#define R register ll
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=;
int n,m;
ll up[N][N],dn[N][N];
bool w[N][N];
inline ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;
}
inline void add(int i,int j,ll a,ll b) {
R G=gcd(dn[i][j],b);
up[i][j]=up[i][j]*(b/G)+a*(dn[i][j]/G);
dn[i][j]=dn[i][j]*(b/G);
G=gcd(up[i][j],dn[i][j]);
if(G) up[i][j]/=G,dn[i][j]/=G;
}
inline void main() {
n=g(),m=g()+;
for(R i=;i<=n;++i) for(R j=;j<=i;++j) { register char ch;
while(ch=getchar(),ch!='*'&&ch!='.');
w[i][j]=(ch=='*');
up[i][j]=,dn[i][j]=;
} for(R i=;i<=n;++i) up[n+][i]=,dn[n+][i]=;
up[][]=dn[][]=;
for(R i=;i<=n;++i) for(R j=;j<=i;++j) {
R a=up[i][j],b=dn[i][j];
if(w[i][j]) {
if(a%==) a/=; else b*=;
add(i+,j,a,b),add(i+,j+,a,b);
} else add(i+,j+,a,b);
} printf("%lld/%lld",up[n+][m],dn[n+][m]); }
}
signed main() {
Luitaryi::main();
}
2019.07.17
BZOJ 1867 [Noi1999]钉子和小球 DP的更多相关文章
- bzoj 1867: [Noi1999]钉子和小球【dp】
设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好 主要是要手写分数比较麻烦 #include<iostream> #include<cstdio> usi ...
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- bzoj1867: [Noi1999]钉子和小球(DP)
一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...
- POJ1189钉子和小球(DP)
对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...
- [bzoj1867][Noi1999][钉子和小球] (动态规划)
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...
- bzoj 2037: [Sdoi2008]Sue的小球——dp
Description Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩 ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
随机推荐
- Kubernetes---Service(SVC)服务
⒈介绍 kubernetes 通过标签选择的方式来匹配一组pod,然后提供对外访问的一种机制 一组pod可以对应到多个svc的 每一个service(svc)都可以理解为一个微服务 Service有且 ...
- (十二)mybatis 查询缓存
目录 什么是查询缓存 图解查询缓存 一级缓存 二级缓存 禁用二级缓存 刷新缓存 二级缓存应用场景 二级缓存局限性 什么是查询缓存 mybatis 在查询数据的时候,会将数据存储起来,下次再次查询相同的 ...
- 【KMP】Censoring
[KMP]Censoring 题目描述 Farmer John has purchased a subscription to Good Hooveskeeping magazine for his ...
- APP安全测试之安装/卸载/更新测试
在app测试中,有个不可忽视的测试方向,就是安装.卸载和更新,有很多人问到了这个问题,我就在这里做了一个总结,有补充的请留言哦 安装 1.正常安装测试,检查是否安装成功. 2.APP版本覆盖测试.例如 ...
- 牛客 26C 手铐 (缩环, 树形dp)
先缩环建树, 对于树上个环$x,y$, 假设$x,y$路径上有$cnt$个环(不包括$x,y$), 贡献就为$2^{cnt}$. 这题卡常挺严重的, 刚开始用并查集合并竟然T了. #include & ...
- ReLeQ:一种自动强化学习的神经网络深度量化方法
ReLeQ:一种自动强化学习的神经网络深度量化方法 ReLeQ:一种自动强化学习的神经网络深度量化方法ReLeQ: An Automatic Reinforcement Learning Ap ...
- Linux:PS查看进程信息,和查看tomcat内存等信息
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/fly910905/article/deta ...
- hdu 1087最长上升子序列和问题
看来大佬的dp思路,在这里就简单的总结下吧. 拿到一个问题,先得考虑是否适用dp算法. 1,找到最优解的结构,看其子问题是否也满足最优化(子问题最优化问题) 2, 看时候有子问题重叠 确定一个问题可 ...
- Web API 接口版本控制 SDammann.WebApi.Versioning
前言 在设计对外 Web API 时,实务上可能会有新旧版本 API 并存的情况,例如开放 Web API 给厂商串接,但同一个服务更新版本时,不一定所有厂商可以在同一时间都跟着更新他们的系统,但如果 ...
- 手写map, filter函数
function map(arr, fn) { let newArr = []; for (let i = 0; i < arr.length; i++) { newArr[i] = fn(ar ...