单调队列优化DP——习题收集
前言
感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新。主要做一个收集整理总结工作。
记录
0x01
POJ - 1821 Fence,比较适合入门的题,写出转移方程后可以比较容易的看出决策变量的取值范围的界是单调变化的,以及价值拆开之后也是单调的
#include<iostream>
#include<cstdio>
#include<algorithm>
#define dd(x) cout<<#x<<" = "<<x<<" "
#define de(x) cout<<#x<<" = "<<x<<"\n"
#define sz(x) int(x.size())
#define All(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> P;
const int maxn=2e4+10,mod=1e9+7,INF=0x3f3f3f3f;
struct node
{
int l,p,s;
}a[maxn];
bool cmp(node x,node y)
{
return x.s<y.s;
}
int q[maxn],h,t;
ll f[105][maxn];
inline ll val(int i,int k)
{
return f[i-1][k]-k*a[i].p;
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for (int i=1;i<=k;++i)
scanf("%d%d%d",&a[i].l,&a[i].p,&a[i].s);
sort(a+1,a+k+1,cmp);
for (int i=1;i<=k;++i)
{
h=0,t=-1;
for (int k=max(0,a[i].s-a[i].l);k<a[i].s;++k)
{
while (h<=t&&val(i,k)>=val(i,q[t]))
--t;
q[++t]=k;
}
for (int j=1;j<=n;++j)
{
f[i][j]=max(f[i-1][j],f[i][j-1]);
if (j<a[i].s)
continue;
while (h<=t&&q[h]<j-a[i].l)
++h;
if (h<=t)
f[i][j]=max(f[i][j],val(i,q[h])+j*a[i].p);
}
}
cout<<f[k][n];
return 0;
}
0x02
HDU 3401 trade,被不少博客当做单调队列优化DP的入门题,但我感觉这题要考虑的细节挺多的,并不简单。定义状态f(i,j)为第i天拥有j数量股票的最大收益,转移的思路就是根据不作为、买和卖三种操作来转移。转移时,卖和买操作中对于股票数的枚举用单调队列来优化掉,然后可以注意到我们是不需要枚举第几天来转移的(由于允许某天中不作为,这种操作的存在显然使得有f(i,j)>=f(i-1,j),即天数的增加只可能使收益变大,而不可能更糟),因此直接用i-w-1来转移就好了。因此总复杂度为平方级别,即枚举i,j的复杂度。细节见代码注释。
#include<bits/stdc++.h>
#define dd(x) cout<<#x<<" = "<<x<<" "
#define de(x) cout<<#x<<" = "<<x<<endl
#define sz(x) int(x.size())
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define All(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
typedef priority_queue<int> BQ;
typedef priority_queue<int,vector<int>,greater<int> > SQ;
const int maxn=2e3+10,INF=0x3f3f3f3f,mod=1e9+7;
int ap[maxn],bp[maxn],as[maxn],bs[maxn],f[maxn][maxn],q[maxn],h,t;
int main()
{
int T;
cin>>T;
while (T--)
{
int n,maxp,w;
scanf("%d%d%d",&n,&maxp,&w);
for (int i=1;i<=n;++i)
scanf("%d%d%d%d",&ap[i],&bp[i],&as[i],&bs[i]);
for (int i=0;i<=n;++i)
for (int j=0;j<=maxp;++j)
f[i][j]=-INF;
for (int i=1;i<=n;++i)
{
if (i<=w+1) // 注意:当前日期i小于w+1时,若拥有j数量的股票,一定是当天或者前面的某天购买来的,因此如下更新
{
for (int j=0;j<=maxp;++j)
{
if (j<=as[i])
f[i][j]=-ap[i]*j;
f[i][j]=max(f[i][j],f[i-1][j]);
}
}
else
{
// 不作为
for (int j=0;j<=maxp;++j)
f[i][j]=max(f[i][j],f[i-1][j]);
// 买
h=t=0;
q[0]=0;
for (int j=1;j<=maxp;++j)
{
while (h<=t&&j-q[h]>as[i])
++h;
f[i][j]=max(f[i][j],f[i-w-1][q[h]]-(j-q[h])*ap[i]);
while (h<=t&&f[i-w-1][j]+j*ap[i]>=f[i-w-1][q[t]]+q[t]*ap[i])
--t;
q[++t]=j;
}
// 卖
h=t=0;
q[0]=maxp;
for (int j=maxp-1;j>=0;--j)
{
while (h<=t&&q[h]-j>bs[i])
++h;
f[i][j]=max(f[i][j],f[i-w-1][q[h]]+(q[h]-j)*bp[i]);
while (h<=t&&f[i-w-1][j]+j*bp[i]>=f[i-w-1][q[t]]+q[t]*bp[i])
--t;
q[++t]=j;
}
}
}
int ans=-INF;
for (int i=0;i<=maxp;++i)
ans=max(ans,f[n][i]);
printf("%d\n",ans);
}
return 0;
}
单调队列优化DP——习题收集的更多相关文章
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
- 单调队列优化dp
洛谷p3800(单调队列优化DP) 题目背景 据说在红雾异变时,博丽灵梦单身前往红魔馆,用十分强硬的手段将事件解决了. 然而当时灵梦在Power达到MAX之前,不具有“上线收点”的能力,所以她想要知道 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- 【单调队列优化dp】 分组
[单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
随机推荐
- Windows phone 8 二维码生成与扫描
1. 二维码的生成 二维码生成用到了一个第三方的插件(zxing.wp8.0) 根据指定的信息,生成对应的二维码. 代码很简单: bool falg=tbk.Text==""?fa ...
- Advanced Installer 开始-程序那里增加,快捷方式、卸载软件、官方网站
. 这个是效果.
- Springboot整合MybatisPlus
目录 1.pom文件 2.创建CodeGenerator.java 3.在application.yml中配置mybatis-plus 4.创建MybatisPlusConfig.java文件 其他 ...
- JS 编程艺术
JS艺术片段剪贴 getFullDate: function (date) { //返回 YYYY年MM月DD日 var year = month = day = ' '; if (isNaN(dat ...
- 面试之HTML5 Web存储
前几天面试遇到了一个题是问localStorage和sessionStorage的区别,当时的回答不是很全面,今天就针对这个问题做一下整理(概念,用法,区别) HTML5 Web存储,一个比 cook ...
- Java安全停止线程方法
1. 早期Java提供java.lang.Thread类型包含了一些列的方法 start(), stop(), stop(Throwable) and suspend(), destroy() and ...
- django 文件上传样例以及遇到的一些问题
使用django上传文件 主流有两种方法 from表单以及ajax,为了自由度高一点,选择了ajax来实现文件的上传 前端部分代码如下: 主要关注 一 有一个文件上传(type='file')的按钮, ...
- JavaSpring【三、Bean】
配置项 id bean的标识 class bean的类全名 scope bean的作用域 constructor-arg 构造注入 properties 设值注入 autowire 装配模式 lazy ...
- Python学习记录7-继承
面向对象的三大特性 封装 继承 多态 封装 封装就是对对象的成员进行访问限制 封装的三个级别: 公开,public 受保护的,protected 私有的,private public,private, ...
- Nginx配置客户端SSL双向认证
对于 NGINX 的 HTTPS 配置,通常情况下我们只需要实现服务端认证就行,因为浏览器内置了一些受信任的证书颁发机构(CA),服务器端只需要拿到这些机构颁发的证书并配置好,浏览器会自己校验证书的可 ...