ES date_histogram 聚合
如下
GET cars/index/_search
{
"size":0,
"aggs": {
"sales": {
"date_histogram": {//按照日期时间聚合分析数据
"field": "sold",//分析的字段
"interval": "month",//按照月份间隔
"format": "yyyy-MM-dd",//日期格式
"min_doc_count": 0,// 没有数据的月份返回0
"extended_bounds":{//强制返回的日期区间,是连续的
"min":"2014-01-01",
"max":"2018-12-31"
}
}
}
}
}
结果如下,拿到数据后方便进行图表分析,这样区间内连续的数据都可以看得很清晰
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 1
},
{
"key_as_string": "2014-02-01",
"key": 1391212800000,
"doc_count": 1
},
{
"key_as_string": "2014-03-01",
"key": 1393632000000,
"doc_count": 0
},
{
"key_as_string": "2014-04-01",
"key": 1396310400000,
"doc_count": 0
},
{
"key_as_string": "2014-05-01",
"key": 1398902400000,
"doc_count": 1
},
{
"key_as_string": "2014-06-01",
"key": 1401580800000,
"doc_count": 0
},
{
"key_as_string": "2014-07-01",
"key": 1404172800000,
"doc_count": 1
},
{
"key_as_string": "2014-08-01",
"key": 1406851200000,
"doc_count": 1
},
{
"key_as_string": "2014-09-01",
"key": 1409529600000,
"doc_count": 0
},
{
"key_as_string": "2014-10-01",
"key": 1412121600000,
"doc_count": 1
},
{
"key_as_string": "2014-11-01",
"key": 1414800000000,
"doc_count": 2
},
{
"key_as_string": "2014-12-01",
"key": 1417392000000,
"doc_count": 0
},
{
"key_as_string": "2015-01-01",
"key": 1420070400000,
"doc_count": 0
},
{
"key_as_string": "2015-02-01",
"key": 1422748800000,
"doc_count": 0
},
{
"key_as_string": "2015-03-01",
"key": 1425168000000,
"doc_count": 0
},
{
"key_as_string": "2015-04-01",
"key": 1427846400000,
"doc_count": 0
},
{
"key_as_string": "2015-05-01",
"key": 1430438400000,
"doc_count": 0
},
{
"key_as_string": "2015-06-01",
"key": 1433116800000,
"doc_count": 0
},
{
"key_as_string": "2015-07-01",
"key": 1435708800000,
"doc_count": 0
},
{
"key_as_string": "2015-08-01",
"key": 1438387200000,
"doc_count": 0
},
{
"key_as_string": "2015-09-01",
"key": 1441065600000,
"doc_count": 0
},
{
"key_as_string": "2015-10-01",
"key": 1443657600000,
"doc_count": 0
},
{
"key_as_string": "2015-11-01",
"key": 1446336000000,
"doc_count": 0
},
{
"key_as_string": "2015-12-01",
"key": 1448928000000,
"doc_count": 0
},
{
"key_as_string": "2016-01-01",
"key": 1451606400000,
"doc_count": 0
},
{
"key_as_string": "2016-02-01",
"key": 1454284800000,
"doc_count": 0
},
{
"key_as_string": "2016-03-01",
"key": 1456790400000,
"doc_count": 0
},
{
"key_as_string": "2016-04-01",
"key": 1459468800000,
"doc_count": 0
},
{
"key_as_string": "2016-05-01",
"key": 1462060800000,
"doc_count": 0
},
{
"key_as_string": "2016-06-01",
"key": 1464739200000,
"doc_count": 0
},
{
"key_as_string": "2016-07-01",
"key": 1467331200000,
"doc_count": 0
},
{
"key_as_string": "2016-08-01",
"key": 1470009600000,
"doc_count": 0
},
{
"key_as_string": "2016-09-01",
"key": 1472688000000,
"doc_count": 0
},
{
"key_as_string": "2016-10-01",
"key": 1475280000000,
"doc_count": 0
},
{
"key_as_string": "2016-11-01",
"key": 1477958400000,
"doc_count": 0
},
{
"key_as_string": "2016-12-01",
"key": 1480550400000,
"doc_count": 0
},
{
"key_as_string": "2017-01-01",
"key": 1483228800000,
"doc_count": 0
},
{
"key_as_string": "2017-02-01",
"key": 1485907200000,
"doc_count": 0
},
{
"key_as_string": "2017-03-01",
"key": 1488326400000,
"doc_count": 0
},
{
"key_as_string": "2017-04-01",
"key": 1491004800000,
"doc_count": 0
},
{
"key_as_string": "2017-05-01",
"key": 1493596800000,
"doc_count": 0
},
{
"key_as_string": "2017-06-01",
"key": 1496275200000,
"doc_count": 0
},
{
"key_as_string": "2017-07-01",
"key": 1498867200000,
"doc_count": 0
},
{
"key_as_string": "2017-08-01",
"key": 1501545600000,
"doc_count": 0
},
{
"key_as_string": "2017-09-01",
"key": 1504224000000,
"doc_count": 0
},
{
"key_as_string": "2017-10-01",
"key": 1506816000000,
"doc_count": 0
},
{
"key_as_string": "2017-11-01",
"key": 1509494400000,
"doc_count": 0
},
{
"key_as_string": "2017-12-01",
"key": 1512086400000,
"doc_count": 0
},
{
"key_as_string": "2018-01-01",
"key": 1514764800000,
"doc_count": 0
},
{
"key_as_string": "2018-02-01",
"key": 1517443200000,
"doc_count": 0
},
{
"key_as_string": "2018-03-01",
"key": 1519862400000,
"doc_count": 0
},
{
"key_as_string": "2018-04-01",
"key": 1522540800000,
"doc_count": 0
},
{
"key_as_string": "2018-05-01",
"key": 1525132800000,
"doc_count": 0
},
{
"key_as_string": "2018-06-01",
"key": 1527811200000,
"doc_count": 0
},
{
"key_as_string": "2018-07-01",
"key": 1530403200000,
"doc_count": 0
},
{
"key_as_string": "2018-08-01",
"key": 1533081600000,
"doc_count": 0
},
{
"key_as_string": "2018-09-01",
"key": 1535760000000,
"doc_count": 0
},
{
"key_as_string": "2018-10-01",
"key": 1538352000000,
"doc_count": 0
},
{
"key_as_string": "2018-11-01",
"key": 1541030400000,
"doc_count": 0
},
{
"key_as_string": "2018-12-01",
"key": 1543622400000,
"doc_count": 0
}
]
}
}
}
ES date_histogram 聚合的更多相关文章
- ES Terms 聚合数据不确定性
Elasticsearch是一个分布式的搜索引擎,每个索引都可以有多个分片,用来将一份大索引的数据切分成多个小的物理索引,解决单个索引数据量过大导致的性能问题,另外每个shard还可以配置多个副本,来 ...
- ES 在聚合结果中进行过滤
ES查询中,先聚合,在聚合结果中进行过滤 { "size": 0, "aggs": { "terms": { "terms&quo ...
- (转载)es进行聚合操作时提示Fielddata is disabled on text fields by default
原文地址:http://blog.csdn.net/u011403655/article/details/71107415 根据es官网的文档执行 GET /megacorp/employee/_se ...
- (转)es进行聚合操作时提示Fielddata is disabled on text fields by default
根据es官网的文档执行 GET /megacorp/employee/_search { "aggs": { "all_interests": { " ...
- javaAPI操作ES分组聚合
连接es的客户端使用的 TransportClient SearchRequestBuilder requestBuilder = transportClient.prepareSearch(indi ...
- es date_histogram强制补零
es补零 GET /cars/transactions/_search { "size" : 0, "aggs": { "sales": { ...
- ES系列九、ES优化聚合查询之深度优先和广度优先
1.优化聚合查询示例 假设我们现在有一些关于电影的数据集,每条数据里面会有一个数组类型的字段存储表演该电影的所有演员的名字. { "actors" : [ "Fred J ...
- 时间序列数据库——索引用ES、聚合分析时加载数据用什么?docvalues的列存储貌似更优优势一些
加载 如何利用索引和主存储,是一种两难的选择. 选择不使用索引,只使用主存储:除非查询的字段就是主存储的排序字段,否则就需要顺序扫描整个主存储. 选择使用索引,然后用找到的row id去主存储加载数据 ...
- ES的聚合操作
构建数据: @Test public void createIndex(){ /** * 创建索引 * */ client. ...
随机推荐
- django模板---过滤器
过滤器 通过django的过滤器可以在无须编码的情况下完成一些基本工作,比如字母的大小写转换.日期转换.获取字符串的长度.过滤器要放到标签的标识符后面,中间用竖杠(|)分隔, 如下面的过滤器把name ...
- 【Leetcode_easy】717. 1-bit and 2-bit Characters
problem 717. 1-bit and 2-bit Characters 题意:solution1: class Solution { public: bool isOneBitCharacte ...
- SSRF——weblogic vulhub 漏洞复现及攻击内网redis(一)(附批量检测脚本)
0X01 概述 SSRF(Server-Side Request Forgery, 服务端请求伪造)利用漏洞可以发起网络请求来攻击内网服务.利用SSRF能实现以下效果:1) 扫描内网(主 ...
- 17-js观察者模式
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- linux防火墙学习
iptables命令是Linux上常用的防火墙软件,是netfilter项目的一部分.可以直接配置,也可以通过许多前端和图形界面配置.语法: iptables(选项)(参数)1,命令选项-t<表 ...
- 机器学习_第三季_Series
这一节没讲啥技术知识, 我就简单的罗列一下, 与numpy相似 1. 导入csv文件 import pandas as pdfandango = pd.read_csv("fandango_ ...
- Jenkins+maven+gitlab自动化部署之gitLab搭建(二)
Gitlab我们这里采用docker方式部署,详细请参考:Docker部署Gitlab11.10.4
- 前后端分离,如何防止api接口被恶意调用或攻击
无论网站,还是App目前基本都是基于api接口模式的开发,那么api的安全就尤为重要了.目前攻击最常见的就是“短信轰炸机”,由于短信接口验证是App,网站检验用户手机号最真实的途径,使用短信验证码在提 ...
- HTTP最常见的响应头
HTTP最常见的响应头如下所示: l Allow:服务器支持哪些请求方法(如GET.POST等): l Content-Encoding:文档的编码(Encode)方法 ...
- C++:标准模板库Sort
一.概述 STL几乎封装了所用的数据结构中的算法,这里主要介绍排序算法的使用,指定排序迭代器区间后,即可实现排序功能. 所需头文件#include <algorithm> sort函数:对 ...