如下

GET cars/index/_search
{
"size":0,
"aggs": {
"sales": {
"date_histogram": {//按照日期时间聚合分析数据
"field": "sold",//分析的字段
"interval": "month",//按照月份间隔
"format": "yyyy-MM-dd",//日期格式
"min_doc_count": 0,// 没有数据的月份返回0
"extended_bounds":{//强制返回的日期区间,是连续的
"min":"2014-01-01",
"max":"2018-12-31"
}
}
}
}
}

结果如下,拿到数据后方便进行图表分析,这样区间内连续的数据都可以看得很清晰

{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 1
},
{
"key_as_string": "2014-02-01",
"key": 1391212800000,
"doc_count": 1
},
{
"key_as_string": "2014-03-01",
"key": 1393632000000,
"doc_count": 0
},
{
"key_as_string": "2014-04-01",
"key": 1396310400000,
"doc_count": 0
},
{
"key_as_string": "2014-05-01",
"key": 1398902400000,
"doc_count": 1
},
{
"key_as_string": "2014-06-01",
"key": 1401580800000,
"doc_count": 0
},
{
"key_as_string": "2014-07-01",
"key": 1404172800000,
"doc_count": 1
},
{
"key_as_string": "2014-08-01",
"key": 1406851200000,
"doc_count": 1
},
{
"key_as_string": "2014-09-01",
"key": 1409529600000,
"doc_count": 0
},
{
"key_as_string": "2014-10-01",
"key": 1412121600000,
"doc_count": 1
},
{
"key_as_string": "2014-11-01",
"key": 1414800000000,
"doc_count": 2
},
{
"key_as_string": "2014-12-01",
"key": 1417392000000,
"doc_count": 0
},
{
"key_as_string": "2015-01-01",
"key": 1420070400000,
"doc_count": 0
},
{
"key_as_string": "2015-02-01",
"key": 1422748800000,
"doc_count": 0
},
{
"key_as_string": "2015-03-01",
"key": 1425168000000,
"doc_count": 0
},
{
"key_as_string": "2015-04-01",
"key": 1427846400000,
"doc_count": 0
},
{
"key_as_string": "2015-05-01",
"key": 1430438400000,
"doc_count": 0
},
{
"key_as_string": "2015-06-01",
"key": 1433116800000,
"doc_count": 0
},
{
"key_as_string": "2015-07-01",
"key": 1435708800000,
"doc_count": 0
},
{
"key_as_string": "2015-08-01",
"key": 1438387200000,
"doc_count": 0
},
{
"key_as_string": "2015-09-01",
"key": 1441065600000,
"doc_count": 0
},
{
"key_as_string": "2015-10-01",
"key": 1443657600000,
"doc_count": 0
},
{
"key_as_string": "2015-11-01",
"key": 1446336000000,
"doc_count": 0
},
{
"key_as_string": "2015-12-01",
"key": 1448928000000,
"doc_count": 0
},
{
"key_as_string": "2016-01-01",
"key": 1451606400000,
"doc_count": 0
},
{
"key_as_string": "2016-02-01",
"key": 1454284800000,
"doc_count": 0
},
{
"key_as_string": "2016-03-01",
"key": 1456790400000,
"doc_count": 0
},
{
"key_as_string": "2016-04-01",
"key": 1459468800000,
"doc_count": 0
},
{
"key_as_string": "2016-05-01",
"key": 1462060800000,
"doc_count": 0
},
{
"key_as_string": "2016-06-01",
"key": 1464739200000,
"doc_count": 0
},
{
"key_as_string": "2016-07-01",
"key": 1467331200000,
"doc_count": 0
},
{
"key_as_string": "2016-08-01",
"key": 1470009600000,
"doc_count": 0
},
{
"key_as_string": "2016-09-01",
"key": 1472688000000,
"doc_count": 0
},
{
"key_as_string": "2016-10-01",
"key": 1475280000000,
"doc_count": 0
},
{
"key_as_string": "2016-11-01",
"key": 1477958400000,
"doc_count": 0
},
{
"key_as_string": "2016-12-01",
"key": 1480550400000,
"doc_count": 0
},
{
"key_as_string": "2017-01-01",
"key": 1483228800000,
"doc_count": 0
},
{
"key_as_string": "2017-02-01",
"key": 1485907200000,
"doc_count": 0
},
{
"key_as_string": "2017-03-01",
"key": 1488326400000,
"doc_count": 0
},
{
"key_as_string": "2017-04-01",
"key": 1491004800000,
"doc_count": 0
},
{
"key_as_string": "2017-05-01",
"key": 1493596800000,
"doc_count": 0
},
{
"key_as_string": "2017-06-01",
"key": 1496275200000,
"doc_count": 0
},
{
"key_as_string": "2017-07-01",
"key": 1498867200000,
"doc_count": 0
},
{
"key_as_string": "2017-08-01",
"key": 1501545600000,
"doc_count": 0
},
{
"key_as_string": "2017-09-01",
"key": 1504224000000,
"doc_count": 0
},
{
"key_as_string": "2017-10-01",
"key": 1506816000000,
"doc_count": 0
},
{
"key_as_string": "2017-11-01",
"key": 1509494400000,
"doc_count": 0
},
{
"key_as_string": "2017-12-01",
"key": 1512086400000,
"doc_count": 0
},
{
"key_as_string": "2018-01-01",
"key": 1514764800000,
"doc_count": 0
},
{
"key_as_string": "2018-02-01",
"key": 1517443200000,
"doc_count": 0
},
{
"key_as_string": "2018-03-01",
"key": 1519862400000,
"doc_count": 0
},
{
"key_as_string": "2018-04-01",
"key": 1522540800000,
"doc_count": 0
},
{
"key_as_string": "2018-05-01",
"key": 1525132800000,
"doc_count": 0
},
{
"key_as_string": "2018-06-01",
"key": 1527811200000,
"doc_count": 0
},
{
"key_as_string": "2018-07-01",
"key": 1530403200000,
"doc_count": 0
},
{
"key_as_string": "2018-08-01",
"key": 1533081600000,
"doc_count": 0
},
{
"key_as_string": "2018-09-01",
"key": 1535760000000,
"doc_count": 0
},
{
"key_as_string": "2018-10-01",
"key": 1538352000000,
"doc_count": 0
},
{
"key_as_string": "2018-11-01",
"key": 1541030400000,
"doc_count": 0
},
{
"key_as_string": "2018-12-01",
"key": 1543622400000,
"doc_count": 0
}
]
}
}
}

ES date_histogram 聚合的更多相关文章

  1. ES Terms 聚合数据不确定性

    Elasticsearch是一个分布式的搜索引擎,每个索引都可以有多个分片,用来将一份大索引的数据切分成多个小的物理索引,解决单个索引数据量过大导致的性能问题,另外每个shard还可以配置多个副本,来 ...

  2. ES 在聚合结果中进行过滤

    ES查询中,先聚合,在聚合结果中进行过滤 { "size": 0, "aggs": { "terms": { "terms&quo ...

  3. (转载)es进行聚合操作时提示Fielddata is disabled on text fields by default

    原文地址:http://blog.csdn.net/u011403655/article/details/71107415 根据es官网的文档执行 GET /megacorp/employee/_se ...

  4. (转)es进行聚合操作时提示Fielddata is disabled on text fields by default

    根据es官网的文档执行 GET /megacorp/employee/_search { "aggs": { "all_interests": { " ...

  5. javaAPI操作ES分组聚合

    连接es的客户端使用的 TransportClient SearchRequestBuilder requestBuilder = transportClient.prepareSearch(indi ...

  6. es date_histogram强制补零

    es补零 GET /cars/transactions/_search { "size" : 0, "aggs": { "sales": { ...

  7. ES系列九、ES优化聚合查询之深度优先和广度优先

    1.优化聚合查询示例 假设我们现在有一些关于电影的数据集,每条数据里面会有一个数组类型的字段存储表演该电影的所有演员的名字. { "actors" : [ "Fred J ...

  8. 时间序列数据库——索引用ES、聚合分析时加载数据用什么?docvalues的列存储貌似更优优势一些

    加载 如何利用索引和主存储,是一种两难的选择. 选择不使用索引,只使用主存储:除非查询的字段就是主存储的排序字段,否则就需要顺序扫描整个主存储. 选择使用索引,然后用找到的row id去主存储加载数据 ...

  9. ES的聚合操作

    构建数据: ​    @Test    public void createIndex(){        /**         * 创建索引         * */        client. ...

随机推荐

  1. caffe dropout解读

    先上caffe dropout_layer.cpp源码,如下: // LayerSetUp DCHECK(threshold_ > 0.); DCHECK(threshold_ < 1.) ...

  2. RobotFramework:发现一个大坑,当post接口入参为json时,千万不能用sojson转化后的json串(ride解析会有异常,非sojson工具问题),直接用浏览器粘过来的就行

    问题背景: 和以往一样愉快的进行着自动化测试,突然就不停的提示我,“程序异常”,查看log发现data中的json变为了数组?????? 那算了,我不先组装入参数据直接data=json入参吧,wha ...

  3. sersync参数说明

    -v, --verbose 详细模式输出-q, --quiet 精简输出模式-c, --checksum 打开校验开关,强制对文件传输进行校验-a, --archive 归档模式,表示以递归方式传输文 ...

  4. 48.javascript基础学习

    javascript基础学习:   http://www.w3school.com.cn/jsref/index.asp jS的引入方式: 1.行间事件:为某一个具体的元素标签赋予js内容,oncli ...

  5. selenium + python 环境配置 (二)之启动IE

    安装好python.selenium工具后,下一步就是启动浏览器 1.启动IE浏览器 即Selenium 调用IEDriverServer打开IE浏览器 ,因此需下载对应的IEDriverServer ...

  6. python for循环 - python基础入门(11)

    在python开发中,除了前篇文章介绍的while循环还有一个for循环也经常使用,两者使用都是大同小异,for循环的使用相对于while循环更加灵活,下面我们一起来了解下具体区别. 一.for 循环 ...

  7. 4、2 java 使用es

    1.导入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  8. Yii错误异常处理

    目录 背景 web错误处理 console错误处理 背景 当程序中出现不可预期的错误,比如说除0异常,yii会给我们扔出这个异常信息,由于现在都是读写分离,客户端调你的api,都是协商好的数据格式,如 ...

  9. 怎么让桌面存到d盘

    1.找到桌面文件夹. (C:\Users\Administrator) [C盘],[用户].[“”系统账号“(如Administrator)文件夹],[桌面] 2.打开桌面文件夹的属性. 查看位置,修 ...

  10. [DEBUG] ubuntu pip安装成功却无法import

    我的pip经常出问题,我也不知道为啥..今天搞啥啥坏=.= 问题: pip自动安装显示成功,在交互环境下却无法import ==========================踩坑========== ...