如下

GET cars/index/_search
{
"size":0,
"aggs": {
"sales": {
"date_histogram": {//按照日期时间聚合分析数据
"field": "sold",//分析的字段
"interval": "month",//按照月份间隔
"format": "yyyy-MM-dd",//日期格式
"min_doc_count": 0,// 没有数据的月份返回0
"extended_bounds":{//强制返回的日期区间,是连续的
"min":"2014-01-01",
"max":"2018-12-31"
}
}
}
}
}

结果如下,拿到数据后方便进行图表分析,这样区间内连续的数据都可以看得很清晰

{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 1
},
{
"key_as_string": "2014-02-01",
"key": 1391212800000,
"doc_count": 1
},
{
"key_as_string": "2014-03-01",
"key": 1393632000000,
"doc_count": 0
},
{
"key_as_string": "2014-04-01",
"key": 1396310400000,
"doc_count": 0
},
{
"key_as_string": "2014-05-01",
"key": 1398902400000,
"doc_count": 1
},
{
"key_as_string": "2014-06-01",
"key": 1401580800000,
"doc_count": 0
},
{
"key_as_string": "2014-07-01",
"key": 1404172800000,
"doc_count": 1
},
{
"key_as_string": "2014-08-01",
"key": 1406851200000,
"doc_count": 1
},
{
"key_as_string": "2014-09-01",
"key": 1409529600000,
"doc_count": 0
},
{
"key_as_string": "2014-10-01",
"key": 1412121600000,
"doc_count": 1
},
{
"key_as_string": "2014-11-01",
"key": 1414800000000,
"doc_count": 2
},
{
"key_as_string": "2014-12-01",
"key": 1417392000000,
"doc_count": 0
},
{
"key_as_string": "2015-01-01",
"key": 1420070400000,
"doc_count": 0
},
{
"key_as_string": "2015-02-01",
"key": 1422748800000,
"doc_count": 0
},
{
"key_as_string": "2015-03-01",
"key": 1425168000000,
"doc_count": 0
},
{
"key_as_string": "2015-04-01",
"key": 1427846400000,
"doc_count": 0
},
{
"key_as_string": "2015-05-01",
"key": 1430438400000,
"doc_count": 0
},
{
"key_as_string": "2015-06-01",
"key": 1433116800000,
"doc_count": 0
},
{
"key_as_string": "2015-07-01",
"key": 1435708800000,
"doc_count": 0
},
{
"key_as_string": "2015-08-01",
"key": 1438387200000,
"doc_count": 0
},
{
"key_as_string": "2015-09-01",
"key": 1441065600000,
"doc_count": 0
},
{
"key_as_string": "2015-10-01",
"key": 1443657600000,
"doc_count": 0
},
{
"key_as_string": "2015-11-01",
"key": 1446336000000,
"doc_count": 0
},
{
"key_as_string": "2015-12-01",
"key": 1448928000000,
"doc_count": 0
},
{
"key_as_string": "2016-01-01",
"key": 1451606400000,
"doc_count": 0
},
{
"key_as_string": "2016-02-01",
"key": 1454284800000,
"doc_count": 0
},
{
"key_as_string": "2016-03-01",
"key": 1456790400000,
"doc_count": 0
},
{
"key_as_string": "2016-04-01",
"key": 1459468800000,
"doc_count": 0
},
{
"key_as_string": "2016-05-01",
"key": 1462060800000,
"doc_count": 0
},
{
"key_as_string": "2016-06-01",
"key": 1464739200000,
"doc_count": 0
},
{
"key_as_string": "2016-07-01",
"key": 1467331200000,
"doc_count": 0
},
{
"key_as_string": "2016-08-01",
"key": 1470009600000,
"doc_count": 0
},
{
"key_as_string": "2016-09-01",
"key": 1472688000000,
"doc_count": 0
},
{
"key_as_string": "2016-10-01",
"key": 1475280000000,
"doc_count": 0
},
{
"key_as_string": "2016-11-01",
"key": 1477958400000,
"doc_count": 0
},
{
"key_as_string": "2016-12-01",
"key": 1480550400000,
"doc_count": 0
},
{
"key_as_string": "2017-01-01",
"key": 1483228800000,
"doc_count": 0
},
{
"key_as_string": "2017-02-01",
"key": 1485907200000,
"doc_count": 0
},
{
"key_as_string": "2017-03-01",
"key": 1488326400000,
"doc_count": 0
},
{
"key_as_string": "2017-04-01",
"key": 1491004800000,
"doc_count": 0
},
{
"key_as_string": "2017-05-01",
"key": 1493596800000,
"doc_count": 0
},
{
"key_as_string": "2017-06-01",
"key": 1496275200000,
"doc_count": 0
},
{
"key_as_string": "2017-07-01",
"key": 1498867200000,
"doc_count": 0
},
{
"key_as_string": "2017-08-01",
"key": 1501545600000,
"doc_count": 0
},
{
"key_as_string": "2017-09-01",
"key": 1504224000000,
"doc_count": 0
},
{
"key_as_string": "2017-10-01",
"key": 1506816000000,
"doc_count": 0
},
{
"key_as_string": "2017-11-01",
"key": 1509494400000,
"doc_count": 0
},
{
"key_as_string": "2017-12-01",
"key": 1512086400000,
"doc_count": 0
},
{
"key_as_string": "2018-01-01",
"key": 1514764800000,
"doc_count": 0
},
{
"key_as_string": "2018-02-01",
"key": 1517443200000,
"doc_count": 0
},
{
"key_as_string": "2018-03-01",
"key": 1519862400000,
"doc_count": 0
},
{
"key_as_string": "2018-04-01",
"key": 1522540800000,
"doc_count": 0
},
{
"key_as_string": "2018-05-01",
"key": 1525132800000,
"doc_count": 0
},
{
"key_as_string": "2018-06-01",
"key": 1527811200000,
"doc_count": 0
},
{
"key_as_string": "2018-07-01",
"key": 1530403200000,
"doc_count": 0
},
{
"key_as_string": "2018-08-01",
"key": 1533081600000,
"doc_count": 0
},
{
"key_as_string": "2018-09-01",
"key": 1535760000000,
"doc_count": 0
},
{
"key_as_string": "2018-10-01",
"key": 1538352000000,
"doc_count": 0
},
{
"key_as_string": "2018-11-01",
"key": 1541030400000,
"doc_count": 0
},
{
"key_as_string": "2018-12-01",
"key": 1543622400000,
"doc_count": 0
}
]
}
}
}

ES date_histogram 聚合的更多相关文章

  1. ES Terms 聚合数据不确定性

    Elasticsearch是一个分布式的搜索引擎,每个索引都可以有多个分片,用来将一份大索引的数据切分成多个小的物理索引,解决单个索引数据量过大导致的性能问题,另外每个shard还可以配置多个副本,来 ...

  2. ES 在聚合结果中进行过滤

    ES查询中,先聚合,在聚合结果中进行过滤 { "size": 0, "aggs": { "terms": { "terms&quo ...

  3. (转载)es进行聚合操作时提示Fielddata is disabled on text fields by default

    原文地址:http://blog.csdn.net/u011403655/article/details/71107415 根据es官网的文档执行 GET /megacorp/employee/_se ...

  4. (转)es进行聚合操作时提示Fielddata is disabled on text fields by default

    根据es官网的文档执行 GET /megacorp/employee/_search { "aggs": { "all_interests": { " ...

  5. javaAPI操作ES分组聚合

    连接es的客户端使用的 TransportClient SearchRequestBuilder requestBuilder = transportClient.prepareSearch(indi ...

  6. es date_histogram强制补零

    es补零 GET /cars/transactions/_search { "size" : 0, "aggs": { "sales": { ...

  7. ES系列九、ES优化聚合查询之深度优先和广度优先

    1.优化聚合查询示例 假设我们现在有一些关于电影的数据集,每条数据里面会有一个数组类型的字段存储表演该电影的所有演员的名字. { "actors" : [ "Fred J ...

  8. 时间序列数据库——索引用ES、聚合分析时加载数据用什么?docvalues的列存储貌似更优优势一些

    加载 如何利用索引和主存储,是一种两难的选择. 选择不使用索引,只使用主存储:除非查询的字段就是主存储的排序字段,否则就需要顺序扫描整个主存储. 选择使用索引,然后用找到的row id去主存储加载数据 ...

  9. ES的聚合操作

    构建数据: ​    @Test    public void createIndex(){        /**         * 创建索引         * */        client. ...

随机推荐

  1. (2) Java SQL框架(java.sql.*)中常用接口详解

    Driver接口:定义了一个驱动程序接口,每一个数据库的JDBC driver都应该实现这个接口,用于访问对应的数据库.比如MySQL的driver为com.mysql.jdbc.Driver.Jav ...

  2. IE和火狐的css兼容性问题

     CSS对浏览器器的兼容性具有很高的价值,通常情况下IE和Firefox存在很大的解析差异,这里介绍一下兼容要点. 1.DOCTYPE 影响 CSS 处理 2.FF: div 设置 margin-le ...

  3. win7下Excel2003/2010 同时打开多个独立窗口

    最近新买了本本,装了许多软件,由于许多苦逼的原因系统被我搞的乱乱的,不得已重装了几次,话说之前我用的都是台式机,用得蛮顺的,但是在重装系统之后发现自己装的Office 2003 在打开Excel 文档 ...

  4. render()中添加js函数

    方案一: { title: '操作', key: 'operation', render: (_, record) => ( <div> <Link to={`/hostMai ...

  5. CareerCup Questions List 职业杯题目列表

    网站 www.careercup.com 上的题库列表 # Title Difficulty Company 1 Guards in a museum Hard F, G  2 Bomberman H ...

  6. 第一次linux下安装nginx记录

    CentOS 7 安装Nginx 并配置自动启动 1.下载Nginx安装包---->地址:http://nginx.org/en/download.html 2.上传安装包到服务期 : rz 命 ...

  7. 【c# 学习笔记】析构函数

    析构函数 用于在类销毁之前释放类实例所使用的托管和非托管资源.对应c#应用程序所创建的大多数对象,可以依靠.net Framework的垃圾回收站(GC) 来隐式地执行内存管理任务.但若创建封装了非托 ...

  8. F2812 DSP程序运行在片内RAM和FLASH的区别

    F2812 DSP程序运行在片内RAM和片内FLASH的区别 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:F2812是带有内部Flash的DSP,与 ...

  9. Haystack--基于Django的全文检索框架

    好文章转载自:https://suguangti.cnblogs.com/p/11167097.html 阅读目录 1.什么是Haystack 2.安装 3.配置 4.处理数据 创建索引 5.设置视图 ...

  10. Bandicam录制三大神器之一

    链接: http://pan.baidu.com/s/1bnDIUOv 密码: etge