如下

GET cars/index/_search
{
"size":0,
"aggs": {
"sales": {
"date_histogram": {//按照日期时间聚合分析数据
"field": "sold",//分析的字段
"interval": "month",//按照月份间隔
"format": "yyyy-MM-dd",//日期格式
"min_doc_count": 0,// 没有数据的月份返回0
"extended_bounds":{//强制返回的日期区间,是连续的
"min":"2014-01-01",
"max":"2018-12-31"
}
}
}
}
}

结果如下,拿到数据后方便进行图表分析,这样区间内连续的数据都可以看得很清晰

{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 1
},
{
"key_as_string": "2014-02-01",
"key": 1391212800000,
"doc_count": 1
},
{
"key_as_string": "2014-03-01",
"key": 1393632000000,
"doc_count": 0
},
{
"key_as_string": "2014-04-01",
"key": 1396310400000,
"doc_count": 0
},
{
"key_as_string": "2014-05-01",
"key": 1398902400000,
"doc_count": 1
},
{
"key_as_string": "2014-06-01",
"key": 1401580800000,
"doc_count": 0
},
{
"key_as_string": "2014-07-01",
"key": 1404172800000,
"doc_count": 1
},
{
"key_as_string": "2014-08-01",
"key": 1406851200000,
"doc_count": 1
},
{
"key_as_string": "2014-09-01",
"key": 1409529600000,
"doc_count": 0
},
{
"key_as_string": "2014-10-01",
"key": 1412121600000,
"doc_count": 1
},
{
"key_as_string": "2014-11-01",
"key": 1414800000000,
"doc_count": 2
},
{
"key_as_string": "2014-12-01",
"key": 1417392000000,
"doc_count": 0
},
{
"key_as_string": "2015-01-01",
"key": 1420070400000,
"doc_count": 0
},
{
"key_as_string": "2015-02-01",
"key": 1422748800000,
"doc_count": 0
},
{
"key_as_string": "2015-03-01",
"key": 1425168000000,
"doc_count": 0
},
{
"key_as_string": "2015-04-01",
"key": 1427846400000,
"doc_count": 0
},
{
"key_as_string": "2015-05-01",
"key": 1430438400000,
"doc_count": 0
},
{
"key_as_string": "2015-06-01",
"key": 1433116800000,
"doc_count": 0
},
{
"key_as_string": "2015-07-01",
"key": 1435708800000,
"doc_count": 0
},
{
"key_as_string": "2015-08-01",
"key": 1438387200000,
"doc_count": 0
},
{
"key_as_string": "2015-09-01",
"key": 1441065600000,
"doc_count": 0
},
{
"key_as_string": "2015-10-01",
"key": 1443657600000,
"doc_count": 0
},
{
"key_as_string": "2015-11-01",
"key": 1446336000000,
"doc_count": 0
},
{
"key_as_string": "2015-12-01",
"key": 1448928000000,
"doc_count": 0
},
{
"key_as_string": "2016-01-01",
"key": 1451606400000,
"doc_count": 0
},
{
"key_as_string": "2016-02-01",
"key": 1454284800000,
"doc_count": 0
},
{
"key_as_string": "2016-03-01",
"key": 1456790400000,
"doc_count": 0
},
{
"key_as_string": "2016-04-01",
"key": 1459468800000,
"doc_count": 0
},
{
"key_as_string": "2016-05-01",
"key": 1462060800000,
"doc_count": 0
},
{
"key_as_string": "2016-06-01",
"key": 1464739200000,
"doc_count": 0
},
{
"key_as_string": "2016-07-01",
"key": 1467331200000,
"doc_count": 0
},
{
"key_as_string": "2016-08-01",
"key": 1470009600000,
"doc_count": 0
},
{
"key_as_string": "2016-09-01",
"key": 1472688000000,
"doc_count": 0
},
{
"key_as_string": "2016-10-01",
"key": 1475280000000,
"doc_count": 0
},
{
"key_as_string": "2016-11-01",
"key": 1477958400000,
"doc_count": 0
},
{
"key_as_string": "2016-12-01",
"key": 1480550400000,
"doc_count": 0
},
{
"key_as_string": "2017-01-01",
"key": 1483228800000,
"doc_count": 0
},
{
"key_as_string": "2017-02-01",
"key": 1485907200000,
"doc_count": 0
},
{
"key_as_string": "2017-03-01",
"key": 1488326400000,
"doc_count": 0
},
{
"key_as_string": "2017-04-01",
"key": 1491004800000,
"doc_count": 0
},
{
"key_as_string": "2017-05-01",
"key": 1493596800000,
"doc_count": 0
},
{
"key_as_string": "2017-06-01",
"key": 1496275200000,
"doc_count": 0
},
{
"key_as_string": "2017-07-01",
"key": 1498867200000,
"doc_count": 0
},
{
"key_as_string": "2017-08-01",
"key": 1501545600000,
"doc_count": 0
},
{
"key_as_string": "2017-09-01",
"key": 1504224000000,
"doc_count": 0
},
{
"key_as_string": "2017-10-01",
"key": 1506816000000,
"doc_count": 0
},
{
"key_as_string": "2017-11-01",
"key": 1509494400000,
"doc_count": 0
},
{
"key_as_string": "2017-12-01",
"key": 1512086400000,
"doc_count": 0
},
{
"key_as_string": "2018-01-01",
"key": 1514764800000,
"doc_count": 0
},
{
"key_as_string": "2018-02-01",
"key": 1517443200000,
"doc_count": 0
},
{
"key_as_string": "2018-03-01",
"key": 1519862400000,
"doc_count": 0
},
{
"key_as_string": "2018-04-01",
"key": 1522540800000,
"doc_count": 0
},
{
"key_as_string": "2018-05-01",
"key": 1525132800000,
"doc_count": 0
},
{
"key_as_string": "2018-06-01",
"key": 1527811200000,
"doc_count": 0
},
{
"key_as_string": "2018-07-01",
"key": 1530403200000,
"doc_count": 0
},
{
"key_as_string": "2018-08-01",
"key": 1533081600000,
"doc_count": 0
},
{
"key_as_string": "2018-09-01",
"key": 1535760000000,
"doc_count": 0
},
{
"key_as_string": "2018-10-01",
"key": 1538352000000,
"doc_count": 0
},
{
"key_as_string": "2018-11-01",
"key": 1541030400000,
"doc_count": 0
},
{
"key_as_string": "2018-12-01",
"key": 1543622400000,
"doc_count": 0
}
]
}
}
}

ES date_histogram 聚合的更多相关文章

  1. ES Terms 聚合数据不确定性

    Elasticsearch是一个分布式的搜索引擎,每个索引都可以有多个分片,用来将一份大索引的数据切分成多个小的物理索引,解决单个索引数据量过大导致的性能问题,另外每个shard还可以配置多个副本,来 ...

  2. ES 在聚合结果中进行过滤

    ES查询中,先聚合,在聚合结果中进行过滤 { "size": 0, "aggs": { "terms": { "terms&quo ...

  3. (转载)es进行聚合操作时提示Fielddata is disabled on text fields by default

    原文地址:http://blog.csdn.net/u011403655/article/details/71107415 根据es官网的文档执行 GET /megacorp/employee/_se ...

  4. (转)es进行聚合操作时提示Fielddata is disabled on text fields by default

    根据es官网的文档执行 GET /megacorp/employee/_search { "aggs": { "all_interests": { " ...

  5. javaAPI操作ES分组聚合

    连接es的客户端使用的 TransportClient SearchRequestBuilder requestBuilder = transportClient.prepareSearch(indi ...

  6. es date_histogram强制补零

    es补零 GET /cars/transactions/_search { "size" : 0, "aggs": { "sales": { ...

  7. ES系列九、ES优化聚合查询之深度优先和广度优先

    1.优化聚合查询示例 假设我们现在有一些关于电影的数据集,每条数据里面会有一个数组类型的字段存储表演该电影的所有演员的名字. { "actors" : [ "Fred J ...

  8. 时间序列数据库——索引用ES、聚合分析时加载数据用什么?docvalues的列存储貌似更优优势一些

    加载 如何利用索引和主存储,是一种两难的选择. 选择不使用索引,只使用主存储:除非查询的字段就是主存储的排序字段,否则就需要顺序扫描整个主存储. 选择使用索引,然后用找到的row id去主存储加载数据 ...

  9. ES的聚合操作

    构建数据: ​    @Test    public void createIndex(){        /**         * 创建索引         * */        client. ...

随机推荐

  1. Hibernatne 缓存中二级缓存简单介绍

    hibernate的session提供了一级缓存,每个session,对同一个id进行两次load,不会发送两条sql给数据库,但是session关闭的时候,一级缓存就失效了. 二级缓存是Sessio ...

  2. wordpress通过$wpdb获取一个分类下所有的文章

    在wordpress程序根目录下新建一个php文件,粘贴下面的代码 如下面的代码注释,修改$CID这个分类id,就可以获取这个分类下的文章了.这个查询需要联合三个表wp_posts.wp_term_r ...

  3. sklearn.svc 参数

    sklearn.svc 参数 sklearn中的SVC函数是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问题的解决算法是SMO). 对于SVC函数的参数 ...

  4. Python----数据预处理代码实例

    为方便收藏学习,转载自:https://www.jb51.net/article/158168.htm 本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下 1.导入标准库 ...

  5. 性能优化-service进程防杀

    service作为后台服务,其重要性不言而喻,但很多时候service会被杀死,从而失去了我们原本想要其发挥的作用,在这种情况下我们该如何确保我们的service不被杀死就是本节需要讨论的内容了 se ...

  6. java中创建线程的方式

    创建线程的方式: 继承thread 实现runnable 线程池 FurureTask/Callable 第一种:继承thread demo1: public class demo1 { public ...

  7. layuiAdmin (单页版)常见问题与解决方案

    最近项目开发中用到了layuiAdmin的单页版进行开发,期间遇到一些问题,在此总结一二: 单页版缓存问题 由于单页面版本的视图文件和静态资源模块都是动态加载的,所以可能存在浏览器的本地缓存问题,因此 ...

  8. eclipse修改java类时不自动重启

    只有添加修改方法参数等重启 在方法里修改不重启 最后保存,Ctrl+S

  9. 洛谷 题解 P3627 【[APIO2009]抢掠计划】

    图论 tarjan缩点+最短路 的一道题 tarjan求强连通分量(为以后缩点打下良好的基础) (如果不会tarjan的请点击这儿) 你需要的东西: (1).dfn[],表示这个点在dfs时是第几个被 ...

  10. 【C++札记】命名空间(namespace)

    介绍 命名空间可以解决程序中的同名冲突,尤其大型项目多人开发中经常用到.比如我们使用C++的标准输出std::cout就使用了std命名空间. 使用作用域符:: #include <iostre ...