P1679 神奇的四次方数

题解

一看这就是个完全背包

m最多不会超过18^4,所以我们把x^4用数组存起来,然后考虑如何填满m,注意存到18^4,不然会像我一样RE。。。

那么问题就转化成完全背包问题,因为一个四次方数可以用多次

设计状态:

f [ i ] [ j ] 表示前 i 个数中,总和不超过 j ,的数的最少个数,

然后我们降一维实现代码即 f [ j ]

注意初始化 f[0]=0

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
#include<queue> using namespace std; typedef long long ll; inline int read()
{
int ans=;
char last=' ',ch=getchar();
while(ch<''||ch>'') last=ch,ch=getchar();
while(ch>=''&&ch<='') ans=ans*+ch-'',ch=getchar();
if(last=='-') ans=-ans;
return ans;
} int m,n;
int s[],f[]; int main()
{
m=read();
for(int i=;i<=;i++) s[i]=i*i*i*i; //之前只算到17,然后我就RE了
// for(int i=0;i<=17;i++) printf("%d:%d\n",i,p[i]);
memset(f,0x7f,sizeof(f));
f[]=; //这里初始化0
for(int i=;s[i]<=m;i++)
for(int j=s[i];j<=m;j++){
f[j]=min(f[j-s[i]]+,f[j]); //数组下标总不能是负数吧
}
printf("%d\n",f[m]);
return ;
}

彩蛋

拉格朗日四平方和定理:

四平方和定理说明每个正整数均可表示为n个整数的平方和。(n<=4)

虽然我也不知道这东西有啥用QWQ

完全背包---P1679 神奇的四次方数的更多相关文章

  1. P1679 神奇的四次方数

    P1679 神奇的四次方数用一些什么东西组成一个什么东西,要求什么东西最优,这时候要考虑背包,不过要分析清楚是什么类型的背包.这题显然是个完全背包. #include<iostream> ...

  2. 洛谷——P1679 神奇的四次方数

    P1679 神奇的四次方数 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知同学了.在班级里负责联络网的是dm同学,于是v神便找到了dm同学,可dm同学正在忙于研究一道有趣的数 ...

  3. 洛谷 P1679 神奇的四次方数

    P1679 神奇的四次方数 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知同学了.在班级里负责联络网的是dm同学,于是v神便找到了dm同学,可dm同学正在忙于研究一道有趣的数 ...

  4. 洛谷P1679神奇的四次方数--DP

    原题请戳>>https://www.luogu.org/problem/show?pid=1679<< 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知 ...

  5. 两个简单的动态规划问题,0-1背包和最大不相邻数累加和,附递归c代码

    最近面试经常被问到动态规划,所以自己做了一个总结,希望能进行深入的理解然后尝试能不能找到通用的解决手段.我觉得动态规划思想好理解,难的是怎么找出全部并且合理的子问题和出口. 我一般把问题分为两类,一类 ...

  6. day116:MoFang:显示背包解锁/未解锁格子数&显示背包的道具物品&背包解锁

    目录 1.显示背包的已解锁/未解锁格子数 2.显示背包中的道具物品 3.用户购买道具的时候,判断背包存储是否达到上限 4.道具也可以使用积分购买 5.在商城界面根据金额/积分显示不同商品 6.背包解锁 ...

  7. DP(第三版(较简单))

    突然很想找点DP题(被虐虐) 前言 我竟然还能想起来当时是怎么做的233,题都是随便找的,跟以前的代码重了就重了吧,反正风格变了qaq [2017-11-18]其实本来打算写好多好多的水题来着,不过要 ...

  8. 洛谷P3537 [POI2012]SZA-Cloakroom(背包)

    传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$ ...

  9. --hdu 2191 悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(多重背包)

    解题思路: 多重背包:第 i 件物品有 j 个可用. 本题中 第 p[i] 类大米 有 c[i] 袋大米可买 ,故本题为多重背包. n(总钱数).m(种类) p[i] 单价 h[i] 重量 c[i] ...

随机推荐

  1. nginx搭建反向代理服务器详解

    一.反向代理:Web服务器的“经纪人” 1.1 反向代理初印象 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从 ...

  2. MySQL之Text Protocol

    1)[01]COM_QUIT 告诉服务器,客户端想要关闭连接 返回:或者关闭一个连接或者一个OK_Packet 有效负载: 1 [01]COM_QUIT 字段: command(1)--0x01 CO ...

  3. linux iptables理论学习

    近来回顾系统知识,想写个基于iptables安全防御的脚本,实现系统自动防护. 参考文档:http://blog.chinaunix.net/uid-26495963-id-3279216.html ...

  4. 【Leetcode】【简单】【283. 移动零】【JavaScript】

    题目描述 283. 移动零 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12]输出: [1,3,12,0,0] 说 ...

  5. django考点

    django考点 1 列举Http请求中常见的请求方式2 谈谈你对HTTP协议的认识.1.1 长连接3 简述MVC模式和MVT模式4 简述Django请求生命周期5 简述什么是FBV和CBV6 谈一谈 ...

  6. 关于tcp send的再次思考

    最近在用socket时,再次思考了一下如何确保对方收到消息的问题 下面是一些不错的回答 https://www.zhihu.com/question/25016042/answer/73785738 ...

  7. mac安装MySQLdb(mysql-python模块)

    折腾了有一会,网上资料很多,但是在实际安装时就会发现有很多坑,如下实战操作可行.供参考. Command "python setup.py egg_info" failed wit ...

  8. vulkan的subpass

    最近在写 unity上 vulkan开subpass 似乎pc上subpass 的input attachement hlslcc_fbinput_0绑不上的 在手机上能绑上 说明subpass这个功 ...

  9. 第59题:螺旋矩阵 II

    一. 问题描述 给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 示例: 输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], ...

  10. .net core 版本支持

    NetCore sdk并不是每个版本都支持VS2017工具,也不是每个版本的sdk版本号和Runtime版本号都一样,这就需要我们在创建某个版本的net core应用时注意:使用不同版本的vs时需要对 ...