title: 【线性代数】6-2:对角化(Diagonalizing a Matrix)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Eigenvalues
  • Eigenvectors
  • Diagonalizing
  • Fibonacci Numbers
  • AkA^kAk
  • Nondiagonalizable Matrix

    toc: true

    date: 2017-11-21 11:48:42

Abstract: 矩阵对角化,以及对角化过程中引入的知识,以及对角化的应用

Keywords: Eigenvalues,Eigenvectors,Diagonalizing,Fibonacci Numbers, AkA^kAk ,Nondiagonalizable Matrix

开篇废话

这几天没写博客,也没干正事,原因有很多,内心极度崩溃的状态,有些好转,所以继续写博客,算是在乱世中寻得一片宁静的天地。

很多事是不以意志而转移的,说白了就是你可能极力的不去惹事而希望能专心去做一件事,但是突然发现条件根本不允许,各种事情会来找到你,其实这些事都是你之前做的事的后续连续效果,也可以说成蝴蝶效应,没办法,这些事情你躲不开的,只能一件件自己处理好,“出来混迟早要还的”。

Diagonalizing a Matrix

对角化一个矩阵,和之前个种各样的分解有一个同样的思路,当矩阵从原始形态通过各种计算性质变形成为各种有规则的,或者在数值上有特殊的性质,这些特殊的形状都可以用在不同问题上,比如LDR分解可以直接求出pivot值,求解方程,QR分解可以是通过变换向量空间的基来使向量某些方面的性质凸显出来。

今天说的对角化就是利用了特征值特征向量的计算性质,通过对 Ax=λxAx=\lambda xAx=λx 进行变形引申得到的。而这个diagonalizing后的矩阵对于矩阵求幂有非常简单的计算。

假设 n×nn \times nn×n 的矩阵 AAA 有n个特征向量,那么我们把每个特征向量按照每列一个特征向量的组合方式形成一个矩阵,那么这个矩阵我们称之为 SSS

AS=A[⋮…⋮x1…xn⋮…⋮]=[⋮…⋮Ax1…Axn⋮…⋮]=[⋮…⋮λ1x1…λnxn⋮…⋮][⋮…⋮λ1x1…λnxn⋮…⋮]=[⋮…⋮x1…xn⋮…⋮][λ1⋱λn]=SΛso:AS=SΛΛ=S−1ASA=SΛS−1
AS=
A\begin{bmatrix}
\vdots &\dots &\vdots\\
x_1&\dots &x_n\\
\vdots &\dots &\vdots
\end{bmatrix}=
\begin{bmatrix}
\vdots &\dots &\vdots\\
Ax_1&\dots &Ax_n\\
\vdots &\dots &\vdots
\end{bmatrix}=
\begin{bmatrix}
\vdots &\dots &\vdots\\
\lambda_1 x_1&\dots &\lambda_n x_n\\
\vdots &\dots &\vdots
\end{bmatrix}\\
\begin{bmatrix}
\vdots &\dots &\vdots\\
\lambda_1 x_1&\dots &\lambda_n x_n\\
\vdots &\dots &\vdots
\end{bmatrix}=
\begin{bmatrix}
\vdots &\dots &\vdots\\
x_1&\dots &x_n\\
\vdots &\dots &\vdots
\end{bmatrix}\begin{bmatrix}
\lambda_1 & &\\
&\ddots &\\
&&\lambda_n
\end{bmatrix}=S\Lambda\\
so:
AS=S\Lambda\\
\Lambda=S^{-1}AS\\
A=S\Lambda S^{-1}
AS=A⎣⎢⎢⎡​⋮x1​⋮​………​⋮xn​⋮​⎦⎥⎥⎤​=⎣⎢⎢⎡​⋮Ax1​⋮​………​⋮Axn​⋮​⎦⎥⎥⎤​=⎣⎢⎢⎡​⋮λ1​x1​⋮​………​⋮λn​xn​⋮​⎦⎥⎥⎤​⎣⎢⎢⎡​⋮λ1​x1​⋮​………​⋮λn​xn​⋮​⎦⎥⎥⎤​=⎣⎢⎢⎡​⋮x1​⋮​………​⋮xn​⋮​⎦⎥⎥⎤​⎣⎡​λ1​​⋱​λn​​⎦⎤​=SΛso:AS=SΛΛ=S−1ASA=SΛS−1

Λ\LambdaΛ 是 λ\lambdaλ 的大写,表示的是对角矩阵,每个元素都是eigenvalue。

如果矩阵A没有n个independence的eigenvector也是无法对角化的,上面的推到过程是属于两头堵的方式,先正向求出 ASASAS 的结果发现其结果和 SΛS\LambdaSΛ 结果一样,所以就得到了 Λ\LambdaΛ 的表达式,下面我们我们就可以来计算 AkA^kAk 了,利用上面推到过程中的最后一步,这个简直非常完美了

Ak=A⋅A…A=SΛS−1SΛS−1⋯SΛS−1=SΛΛ⋯ΛS−1=SΛkS−1
A^k=A\cdot A\dots A=S \Lambda S^{-1} S \Lambda S^{-1} \cdots S \Lambda S^{-1}=S \Lambda \Lambda \cdots \Lambda S^{-1}=S \Lambda^k S^{-1}
Ak=A⋅A…A=SΛS−1SΛS−1⋯SΛS−1=SΛΛ⋯ΛS−1=SΛkS−1

一个矩阵的k次幂等于其对角矩阵的k次幂-- SΛkS−1S \Lambda^k S^{-1}SΛkS−1

我们可以回忆下上一篇,我们求过一个矩阵的k次方乘以一个向量 AkyA^kyAky ,用特征向量来作为 yyy 的基,然后写成

Ak:suppose:  C=[c1…cn]y=c1x1+c2x2+⋯+cnxn=SCAky=Ak(c1x1+c2x2+⋯+cnxn)=c1Akx1+c2Akx2+⋯+cnAkxn=c1λ1kx1+c2λ2kx2+⋯+cnλnkxn=SΛkC
A^k:\\
suppose: \;C=\begin{bmatrix}c_1 &\dots & c_n\end{bmatrix}\\
y=c_1 x_1+c_2 x_2+\dots +c_n x_n=SC \\
A^k y=A^k(c_1 x_1+c_2 x_2+\dots +c_n x_n)\\
=c_1A^kx_1+c_2A^kx_2+\dots +c_nA^kx_n\\
=c_1\lambda_1^k x_1+c_2\lambda_2^k x_2+\dots + c_n\lambda_n^k x_n\\
=S\Lambda^k C
Ak:suppose:C=[c1​​…​cn​​]y=c1​x1​+c2​x2​+⋯+cn​xn​=SCAky=Ak(c1​x1​+c2​x2​+⋯+cn​xn​)=c1​Akx1​+c2​Akx2​+⋯+cn​Akxn​=c1​λ1k​x1​+c2​λ2k​x2​+⋯+cn​λnk​xn​=SΛkC

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-6-2转载请标明出处

【线性代数】6-2:对角化(Diagonalizing a Matrix)的更多相关文章

  1. 【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)

    title: [线性代数]7-3:对角化和伪逆(Diagonalization and the Pseudoinverse) categories: Mathematic Linear Algebra ...

  2. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...

  3. MIT线性代数:22.对角化和A的幂

  4. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  5. PyTorch 中的乘法:mul()、multiply()、matmul()、mm()、mv()、dot()

    torch.mul() 函数功能:逐个对 input 和 other 中对应的元素相乘. 本操作支持广播,因此 input 和 other 均可以是张量或者数字. 举例如下: >>> ...

  6. 线性代数之——对角化和 A 的幂

    利用特征向量的属性,矩阵 \(A\) 可以变成一个对角化矩阵 \(\Lambda\). 1. 对角化 假设一个 \(n×n\) 的矩阵 \(A\) 有 \(n\) 个线性不相关的特征向量 \(x_1, ...

  7. [线性代数] 矩阵代数進階:矩阵分解 Matrix factorization

    Matrix factorization 导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解.其他集数可在[线性代数]标籤文章找到.有空再弄目录什麽的. Matrix factorization ...

  8. 【线性代数】7-2:线性变化的矩阵(The Matrix of a Linear Transformation)

    title: [线性代数]7-2:线性变化的矩阵(The Matrix of a Linear Transformation) categories: Mathematic Linear Algebr ...

  9. 【线性代数】2-3:消元与矩阵的关系(Elimination and Matrix)

    title: [线性代数]2-3:消元与矩阵的关系(Elimination and Matrix) toc: true categories: Mathematic Linear Algebra da ...

随机推荐

  1. ASP.NET Core分布式项目-1.IdentityServer4登录中心

    源码下载 一.添加服务端的api 1.添加NUGet包 IdentityServer4 点击下载,重新生成 2.添加Startup配置 打开Startup文件 public class Startup ...

  2. (转) 从0移植uboot(五) _实现串口输出

    ref : https://www.cnblogs.com/xiaojiang1025/p/6500520.html 串口作为一种非常简单的通信方式,才是嵌入式系统调试的王道,通过设置串口输出,我们可 ...

  3. C#利用反射和泛型给不同对象赋值

    /// <summary> /// 适用于初始化新实体 /// </summary> static public T RotationMapping<T, S>(S ...

  4. ggplot2|详解八大基本绘图要素

    本文首发于微信公众号 *“ 生信补给站 ” ,期待您的关注!!!* 原文链接:https://mp.weixin.qq.com/s?__biz=MzIyNDI1MzgzOQ==&mid=265 ...

  5. opencv-03--图像的算术运算

    图像的算术运算 Mat类把很多算数操作符都进行了重载,让它们来符合矩阵的一些运算,如果+.-.点乘等. 下面我们来看看用位操作和基本算术运算来完成colorReduce程序,它更简单,更高效. 将25 ...

  6. puml 用于代码注释

    notebook 笔记本 @startuml rectangle sql_decode.py{ object SQLDataset object Name SQLDataset : meta = &q ...

  7. document对象详解

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD ...

  8. Point to class member

    #include <iostream> using namespace std; class Student { public: Student(string n, int nu):nam ...

  9. 【数字图像处理】目标检测的图像特征提取之HOG特征

    1.HOG特征 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯 ...

  10. Spring Boot笔记

    @SpringBootApplication中有以下注解:@Target({ElementType.TYPE})@Retention(RetentionPolicy.RUNTIME)@Document ...