【DSP开发】【并行计算-CUDA开发】TI OpenCL v01.01.xx
TI OpenCL v01.01.xx
TI OpenCL™ Runtime Documentation Contents:
- Introduction
- OpenCL 1.1 Reference Material
- Compilation
- Memory Usage
- Device Memory
- How DDR3 is
Partitioned for Linux System and OpenCL - Alternate
Host malloc/free Extension for Zero Copy OpenCL Kernels - The OpenCL Memory
Model - OpenCL Buffers
- Buffer Read/Write
vs. Map/Unmap - Discovering OpenCL
Memory Sizes and Limits - Cache Operations
- Large OpenCL
buffers and Memory Beyond the 32-bit DSP Address Space - User
Defined DSP Heap Extension
- Execution Model
- Extensions
- Calling
Standard C Code From OpenCL C Code - Calling Standard
C code with OpenMP from OpenCL C code - C66x standard
C compiler intrinsic functions - OpenCL C code
using printf - DMA Control Using
EdmaMgr Functions - Using
Extended Memory on the 66AK2x device - Fast Global
buffers in on-chip MSMC memory - OpenCL
C Builtin Function Extensions - Cache Operations
- Calling
- Environment
Variables - Optimization Tips
- Optimization
Techniques for Host Code - Optimization
Techniques for Device (DSP) Code- Prefer
Kernels with 1 work-item per work-group - Use
Local Buffers - Use
async_work_group_copy and async_work_group_strided_copy - Avoid
DSP writes directly to DDR - Use
the reqd_work_group_size attribute on kernels - Use
the TI OpenCL extension than allows Standard C code to be called from OpenCL C code - Avoid
OpenCL C Barriers - Use
the most efficient data type on the DSP - Do
Not Use Large Vector Types - Consecutive
memory accesses - Prefer
the CPU style of writing OpenCL code over the GPU style
- Prefer
- Typical
Steps to Optimize Device Code - Optimizing
3x3 Gaussian smoothing filter - Performance
Data
- Optimization
- Examples
- Building
and Running - Example Descriptions
- platforms
example - simple
example - mandelbrot,
mandelbrot_native examples - ccode
example - matmpy
example - offline
example - vecadd_openmp
example - vecadd_openmp_t
example - vecadd
example - vecadd_mpax
example - vecadd_mpax_openmp
example - dsplib_fft
example - ooo,
ooo_map examples - null
example - sgemm
example - dgemm
example - edmamgr
example - dspheap
example
- platforms
- Float compute
example - Monte Carlo
example
- Building
- Debug
- Profiling
- OpenCL on TI-RTOS
- Frequently Asked Questions
- How do I get support
for TI OpenCL products? - Which TI OpenCL Version
is Installed? - Using Python OpenCL
with the TI OpenCL implementation - Guidelines
for porting Stand-alone DSP applications to OpenCL - OpenCL Interoperability
with Host OpenMP - MCSDK-HPC
to OpenCL Component Version Map - Does TI’s OpenCL support
images and samplers? - Why does the OpenCL ICD
installed on my platform not find the TI OpenCL implementation? - Why do I get messages about
/var/lock/opencl when running OpenCL applications? - Why do I get DLOAD
error messages when running OpenCL applications? - How do I limit log
file sizes on EVM’s temporary file storage (tmpfs)?
- How do I get support
- Readme
- Disclaimer
- Important
Notice
【DSP开发】【并行计算-CUDA开发】TI OpenCL v01.01.xx的更多相关文章
- 【并行计算-CUDA开发】FPGA 设计者应该学习 OpenCL及爱上OpenCL的十个理由
为什么要学习OpenCL呢?就目前我所从事的医疗超声领域,超声前端的信号处理器一般是通过FPGA或FPGA+DSP来设计的,高端设备用的是FPGA+ GPU架构.传统的设计方法是通过HDL语言来进行设 ...
- 【并行计算-CUDA开发】从零开始学习OpenCL开发(一)架构
多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的 ...
- 【并行计算-CUDA开发】OpenCL、OpenGL和DirectX三者的区别
什么是OpenCL? OpenCL全称Open Computing Language,是第一个面向异构系统通用目的并行编程的开放式.免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器 ...
- 【并行计算-CUDA开发】Windows下opencl环境配置
首先声明我这篇主要是根据下面网站的介绍, 加以修改和详细描述,一步一步在我自己的电脑上实现的, http://www.cmnsoft.com/wordpress/?tag=opencl&pag ...
- 【并行计算-CUDA开发】GPGPU OpenCL/CUDA 高性能编程的10大注意事项
GPGPU OpenCL/CUDA 高性能编程的10大注意事项 1.展开循环 如果提前知道了循环的次数,可以进行循环展开,这样省去了循环条件的比较次数.但是同时也不能使得kernel代码太大. 循环展 ...
- 【并行计算-CUDA开发】Apple's OpenCL——再谈Local Memory
在OpenCL中,用__local(或local)修饰的变量会被存放在一个计算单元(Compute Unit)的共享存储器区域中.对于nVidia的GPU,一个CU可以被映射为物理上的一块SM(Str ...
- 【并行计算-CUDA开发】浅谈GPU并行计算新趋势
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...
- 【并行计算-CUDA开发】OpenACC与OpenHMPP
在西雅图超级计算大会(SC11)上发布了新的基于指令的加速器并行编程标准,既OpenACC.这个开发标准的目的是让更多的编程人员可以用到GPU计算,同时计算结果可以跨加速器使用,甚至能用在多核CPU上 ...
- 【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评 ...
随机推荐
- npm报错 This is probably not a problem with npm,there is likely additional logging output above可能的原因
npm WARN Local package.json exists, but node_modules missing, did you mean to install? 解决方法: 输入npm i ...
- 逻辑卷----LVM的基础和应用
逻辑卷管理器 Logical Volume Manager-------逻辑卷宗管理器.逻辑扇区管理器.逻辑磁盘管理器,是Linux核心所提供的逻辑卷管理(Logical volume managem ...
- 改变CTS测试中timeout时间
关键类: JarHostTest.java——>目录:%SOURCE_ROOT%/cts/tools/tradefed-host/src/com/android/cts/tradefed/tes ...
- 2019 7.6 T2 虫洞
虫洞(conch) [题目描述] HZY 现在在数轴原点处,她想跑到 2000001 这个点上.听说各路 神犇暑假里都在健♂身,所有 HZY 也想不要只是简单地跑步,于是她 决定在这条数轴上造虫洞,具 ...
- centos 7 php7 yum源
rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm rpm -Uvh https://mir ...
- 库&插件&框架&工具
nodejs 入门 nodejs 入门教程,大家可以在 github 上提交错误 2016 年最好用的表单验证库 SMValidator.js 前端表单验证工具分享 浅谈前端线上部署与运维 说到前端部 ...
- dom4j读写XML文档
dom4j 最常用最简单的用法(转) 要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http:/ ...
- RESTful API是什么?
1. REST 是Repersentational State Transfer的缩写 翻译为"表述性状态传递",那么什么是表述性状态传递呢?为了理解这个词语,我们从"R ...
- springboot 热部署替代方式
因为使用的 idea springboot2.2.0 snapshot版本, 常规的devtools方法实在是实现不了热部署,所以采用手动update的方法更新,测试可以成功更新resource里面的 ...
- Solr 5.2.1 部署并索引Mysql数据库
1.Solr简介 Solr是一个高性能,采用Java5开发,SolrSolr基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对查 ...