世界是物质的,物质是运动的,运动是有规律的,规律是可以被认识的

二项式反演

\[
g_n=\sum_{i=0}^n \binom{n}if_i\Rightarrow f_n=\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i
\]

证明如下

\[
\begin{aligned}
\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i
&=\sum_{i=0}^n(-1)^{n-i}\binom{n}i\sum_{j=0}^i\binom{i}jf_i\\
&=\sum_{j=0}^nf_i \sum_{i=j}^n(-1)^{n-i}\binom{n}i\binom{i}j\\
&=\sum_{j=0}^nf_i \sum_{i=j}^n(-1)^{n-i}\binom{n}j\binom{n-j}{i-j}\\
&=\sum_{j=0}^n\binom{n}jf_j \sum_{i=j}^n(-1)^{n-i}\binom{n-j}{i-j}\\
&=\sum_{j=0}^n\binom{n}jf_j \sum_{i=0}^{n-j}(-1)^{n-j-i}\binom{n-j}i\\
&=\sum_{j=0}^n\binom{n}jf_j\times (1-1)^{n-j}
\end{aligned}
\]

在默认\(0^0=1\)的情况下,显然

\[
\sum_{j=0}^n\binom{n}jf_j\times (1-1)^{n-j}=f_n\\
f_n=f_n
\]

最值反演

\[
\max(S)=\sum_{T\subseteq S} (-1)^{|T|-1}\min(T)\\
E(\max S)=\sum_{T\subseteq S} (-1)^{|T|-1}E(\min T)\\
\text{lcm}(S)=\prod_{T\subseteq S} (-1)^{|T|-1}\gcd(T)\\
\]

其中,\(S,T\not=\varnothing\)。

推导第一类

设系数函数\(f\)满足
\[
\max(S)=\sum_{T\subseteq S} f(|T|)\min(T)
\]

考虑\(S\)中第\(x+1\)大元素作为子集的最小值的情况数,显然
\[
\sum_{i=0}^x\binom{x}if(i+1) = [x=0]\\
f(x+1)=\sum_{i=0}^x(-1)^{x-i}\binom{x}i[i=0]=(-1)^x
\]
于是\(f(x)=(-1)^{x-1}\)。

扩展
\[
\text{maxk}(S)=\sum_{T\subseteq S} f(|T|)\min(T)
\]
此时需要满足
\[
\sum_{i=0}^x\binom{x}if(i+1) = [x=k-1]\\
f(x+1)=\sum_{i=0}^x(-1)^{x-i}\binom{x}i[i=k-1]=(-1)^{x-k+1}\binom{x}{k-1}
\]
即\(f(x)=(-1)^{x-k}\binom{x-1}{k-1}\)。
\[
\text{maxk}(S)=\sum_{T\subseteq S}(-1)^{|T|-k}\binom{|T|-1}{k-1}\min(T)
\]

二项式反演/minmax容斥初探的更多相关文章

  1. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  2. 【LOJ#6374】网格(二项式反演,容斥)

    [LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...

  3. 最值反演 min-max容斥

    说实话这些博客早晚都要整理后上m***999. 最值反演是针对一个集合中最大/最小值的反演. \[ \max\{S\}=\sum_{T\subset S}(-1)^{|T|+1}\min\{T\} \ ...

  4. [HDU4336]Card Collector(min-max容斥,最值反演)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. LOJ6102「2017 山东二轮集训 Day1」第三题 【min-max容斥,反演】

    题目描述:输入一个大小为\(n\)的集合\(S\),求\(\text{lcm}_{k\in S}f_k\),其中\(f_k\)是第$$个Fibonacci数. 数据范围:\(n\le 5\times ...

  6. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  7. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  8. [总结] Min-Max容斥学习笔记

    min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...

  9. 【Luogu4707】重返现世(min-max容斥)

    [Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...

随机推荐

  1. Linux命令行学习日志-ps ax

    当我们需要查询某个运行中的进程的时候,这个命令就显得很有用了,可以查看当前进程的PID和状态(S代表睡眠,SW代表睡眠和等待,R表示运行中) ps ax //查看当前运行中的进程

  2. 路由配置系统(URLconf)

    URL配置(URLconf)就像Django所支撑网站的目录. 它的本质是URL与要为该URL调用的视图函数之间的映射表.你就是以这种方式告诉Django,对于URL(1)调用代码(1), 对于URL ...

  3. mysqldump 命令

    [参考文章]:mysqldump命令详解 mysql数据库中备份工具,用于将MySQL服务器中的数据库以标准的sql语言的方式导出,并保存到文件中. 1. 参数介绍 默认为 true:表示默认情况下 ...

  4. Difference between C# compiler version and language version

    Difference between C# compiler version and language version     As nobody gives a good enough answer ...

  5. ubuntu下如何关闭某个端口?

    1. 开启防火墙 sudo ufw enable 2. 关闭某个端口,如80端口 sudo ufw deny 80 3. 查询当前防火墙状态 sudo ufw status

  6. LC 670. Maximum Swap

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  7. nginx开启目录浏览,解决中文乱码问题

    nginx开启目录浏览,解决中文乱码问题 方法如下: server { listen 80; #listen [::]:80; server_name gongzi.liwenhui.xin gz.l ...

  8. html里 调整字间距

    使用字与字的间距可设置letter-spacing属性实现,例如:1.p{letter-spacing:15px;}即表示<p>这是一段文字</p>标签里的文字间距为15px. ...

  9. 数据中心网络架构的问题与演进 — 云网融合与 SD-WAN

    目录 文章目录 目录 前文列表 云网融合 云网融合的应用场景 SD-WAN SD-WAN 的应用场景 企业组网互联 SD-EN 数据中心互联 SD-DCI 云间互联 SD-CX 企业用户接入云 数据中 ...

  10. 精通Dubbo——dubbo2.0源码中的设计模式与SPI介绍

    Dubbo源码包介绍当我们从github把Dubbo源码下载下来之后有如下源码包   下面来说明每个包的作用,以便我们有目的的阅读代码 dubbo-admin dubbo管理平台源码包,用来管理dub ...