二项式反演/minmax容斥初探
世界是物质的,物质是运动的,运动是有规律的,规律是可以被认识的
二项式反演
\[
g_n=\sum_{i=0}^n \binom{n}if_i\Rightarrow f_n=\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i
\]
证明如下
\[
\begin{aligned}
\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i
&=\sum_{i=0}^n(-1)^{n-i}\binom{n}i\sum_{j=0}^i\binom{i}jf_i\\
&=\sum_{j=0}^nf_i \sum_{i=j}^n(-1)^{n-i}\binom{n}i\binom{i}j\\
&=\sum_{j=0}^nf_i \sum_{i=j}^n(-1)^{n-i}\binom{n}j\binom{n-j}{i-j}\\
&=\sum_{j=0}^n\binom{n}jf_j \sum_{i=j}^n(-1)^{n-i}\binom{n-j}{i-j}\\
&=\sum_{j=0}^n\binom{n}jf_j \sum_{i=0}^{n-j}(-1)^{n-j-i}\binom{n-j}i\\
&=\sum_{j=0}^n\binom{n}jf_j\times (1-1)^{n-j}
\end{aligned}
\]
在默认\(0^0=1\)的情况下,显然
\[
\sum_{j=0}^n\binom{n}jf_j\times (1-1)^{n-j}=f_n\\
f_n=f_n
\]
最值反演
\[
\max(S)=\sum_{T\subseteq S} (-1)^{|T|-1}\min(T)\\
E(\max S)=\sum_{T\subseteq S} (-1)^{|T|-1}E(\min T)\\
\text{lcm}(S)=\prod_{T\subseteq S} (-1)^{|T|-1}\gcd(T)\\
\]
其中,\(S,T\not=\varnothing\)。
推导第一类
设系数函数\(f\)满足
\[
\max(S)=\sum_{T\subseteq S} f(|T|)\min(T)
\]
考虑\(S\)中第\(x+1\)大元素作为子集的最小值的情况数,显然
\[
\sum_{i=0}^x\binom{x}if(i+1) = [x=0]\\
f(x+1)=\sum_{i=0}^x(-1)^{x-i}\binom{x}i[i=0]=(-1)^x
\]
于是\(f(x)=(-1)^{x-1}\)。
扩展
\[
\text{maxk}(S)=\sum_{T\subseteq S} f(|T|)\min(T)
\]
此时需要满足
\[
\sum_{i=0}^x\binom{x}if(i+1) = [x=k-1]\\
f(x+1)=\sum_{i=0}^x(-1)^{x-i}\binom{x}i[i=k-1]=(-1)^{x-k+1}\binom{x}{k-1}
\]
即\(f(x)=(-1)^{x-k}\binom{x-1}{k-1}\)。
\[
\text{maxk}(S)=\sum_{T\subseteq S}(-1)^{|T|-k}\binom{|T|-1}{k-1}\min(T)
\]
二项式反演/minmax容斥初探的更多相关文章
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- 【LOJ#6374】网格(二项式反演,容斥)
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...
- 最值反演 min-max容斥
说实话这些博客早晚都要整理后上m***999. 最值反演是针对一个集合中最大/最小值的反演. \[ \max\{S\}=\sum_{T\subset S}(-1)^{|T|+1}\min\{T\} \ ...
- [HDU4336]Card Collector(min-max容斥,最值反演)
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- LOJ6102「2017 山东二轮集训 Day1」第三题 【min-max容斥,反演】
题目描述:输入一个大小为\(n\)的集合\(S\),求\(\text{lcm}_{k\in S}f_k\),其中\(f_k\)是第$$个Fibonacci数. 数据范围:\(n\le 5\times ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- min-max容斥学习笔记
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...
- [总结] Min-Max容斥学习笔记
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...
- 【Luogu4707】重返现世(min-max容斥)
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...
随机推荐
- 数据结构实验之链表二:逆序建立链表(SDUT 2117)
题目链接 #include <bits/stdc++.h> using namespace std; struct node { int data; struct node *next; ...
- trie树(字典树)的部分简单实现
什么是trie树(字典树)? trie树是一种用于快速检索的多叉树结构.和二叉查找树不同,在trie树中,每个结点上并非存储一个元素. trie树把要查找的关键词看作一个字符序列.并根据构成关键词字符 ...
- ie中兼容性问题
由于项目要要兼容到ie8原本没有问题的代码一但用ie8打开js的报错找不到对象就都来了,其实总结起来就是ie越老的版本就越多方法名识别不到,那就少什么方法添加什么,比如说我的项目就要引入<scr ...
- INNER JOIN连接两个表、三个表、五个表的SQL语句
1.连接两个数据表的用法: FROM Member INNER JOIN MemberSort ON Member.MemberSort=MemberSort.MemberSort 语法格式可以概括为 ...
- Java中基本数据类型
在数据类型中,最常用也是最基础的数据类型,被称作基本数据类型.可以使用这些类型的值来代表一些简单的状态. Java 语言的基本数据类型总共有以下8 种,下面是按照用途划分出的4 个类别: 定点类型: ...
- 真正解决方案:phpMyAdmin #1089 - Incorrect prefix key; the storage engine doesn't support unique prefix key
先直接给解决方案: 点击A_I后,不要输入大小,直接点击执行!!! 分析 当你在使用phpMyAdmin 创建数据库表的时候,一般我们需要设置一个主键,然后让其自增长,但是有时候当你设置完成后,你可能 ...
- Understanding decimal(p, s) of sqlite3
带固定精度和小数位数的数值数据类型.decimal(p[ ,s]) 和 numeric(p[ ,s]) 固定精度和小数位数. 使用最大精度时,有效值的范围为 - 10^38 +1 到 10^38 - ...
- webpy简单入门---1
1. 2. 3. 4.
- mysql8修改密码问题
查看初始密码: grep "temporary password" /var/log/mysqld.log 查看validate_password变量 SHOW VARIABLES ...
- 转载:深入浅出 Java 8 Lambda 表达式
原文地址:http://viralpatel.net/blogs/Lambda-expressions-java-tutorial/ OneAPM for Java 能够深入到所有 Java 应用内部 ...