世界是物质的,物质是运动的,运动是有规律的,规律是可以被认识的

二项式反演

\[
g_n=\sum_{i=0}^n \binom{n}if_i\Rightarrow f_n=\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i
\]

证明如下

\[
\begin{aligned}
\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i
&=\sum_{i=0}^n(-1)^{n-i}\binom{n}i\sum_{j=0}^i\binom{i}jf_i\\
&=\sum_{j=0}^nf_i \sum_{i=j}^n(-1)^{n-i}\binom{n}i\binom{i}j\\
&=\sum_{j=0}^nf_i \sum_{i=j}^n(-1)^{n-i}\binom{n}j\binom{n-j}{i-j}\\
&=\sum_{j=0}^n\binom{n}jf_j \sum_{i=j}^n(-1)^{n-i}\binom{n-j}{i-j}\\
&=\sum_{j=0}^n\binom{n}jf_j \sum_{i=0}^{n-j}(-1)^{n-j-i}\binom{n-j}i\\
&=\sum_{j=0}^n\binom{n}jf_j\times (1-1)^{n-j}
\end{aligned}
\]

在默认\(0^0=1\)的情况下,显然

\[
\sum_{j=0}^n\binom{n}jf_j\times (1-1)^{n-j}=f_n\\
f_n=f_n
\]

最值反演

\[
\max(S)=\sum_{T\subseteq S} (-1)^{|T|-1}\min(T)\\
E(\max S)=\sum_{T\subseteq S} (-1)^{|T|-1}E(\min T)\\
\text{lcm}(S)=\prod_{T\subseteq S} (-1)^{|T|-1}\gcd(T)\\
\]

其中,\(S,T\not=\varnothing\)。

推导第一类

设系数函数\(f\)满足
\[
\max(S)=\sum_{T\subseteq S} f(|T|)\min(T)
\]

考虑\(S\)中第\(x+1\)大元素作为子集的最小值的情况数,显然
\[
\sum_{i=0}^x\binom{x}if(i+1) = [x=0]\\
f(x+1)=\sum_{i=0}^x(-1)^{x-i}\binom{x}i[i=0]=(-1)^x
\]
于是\(f(x)=(-1)^{x-1}\)。

扩展
\[
\text{maxk}(S)=\sum_{T\subseteq S} f(|T|)\min(T)
\]
此时需要满足
\[
\sum_{i=0}^x\binom{x}if(i+1) = [x=k-1]\\
f(x+1)=\sum_{i=0}^x(-1)^{x-i}\binom{x}i[i=k-1]=(-1)^{x-k+1}\binom{x}{k-1}
\]
即\(f(x)=(-1)^{x-k}\binom{x-1}{k-1}\)。
\[
\text{maxk}(S)=\sum_{T\subseteq S}(-1)^{|T|-k}\binom{|T|-1}{k-1}\min(T)
\]

二项式反演/minmax容斥初探的更多相关文章

  1. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  2. 【LOJ#6374】网格(二项式反演,容斥)

    [LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...

  3. 最值反演 min-max容斥

    说实话这些博客早晚都要整理后上m***999. 最值反演是针对一个集合中最大/最小值的反演. \[ \max\{S\}=\sum_{T\subset S}(-1)^{|T|+1}\min\{T\} \ ...

  4. [HDU4336]Card Collector(min-max容斥,最值反演)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. LOJ6102「2017 山东二轮集训 Day1」第三题 【min-max容斥,反演】

    题目描述:输入一个大小为\(n\)的集合\(S\),求\(\text{lcm}_{k\in S}f_k\),其中\(f_k\)是第$$个Fibonacci数. 数据范围:\(n\le 5\times ...

  6. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  7. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  8. [总结] Min-Max容斥学习笔记

    min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...

  9. 【Luogu4707】重返现世(min-max容斥)

    [Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...

随机推荐

  1. 虚拟机扩展Linux根目录磁盘空间

    简要扩展空间方法http://www.kwx.gd/CentOSApp/Xen-Centos6-Mounted-HardDrive.html 最近在VMware虚拟机上使用Centos,用着用着,发现 ...

  2. ARTS打卡计划第十一周

    Algorithms: https://leetcode-cn.com/problems/linked-list-cycle/ 链表环. Review: “What I learned from do ...

  3. SpringMVC 请求映射注解

    @GetMapping: 处理get请求,传统的RequestMapping来编写应该是@RequestMapping(value = “/get/{id}”, method = RequestMet ...

  4. Linux kernel device mapper

    Device Mapper 是 Linux2.6 内核中支持逻辑卷管理的通用设备映射机制,它为实现用于存储资源管理的块设备驱动提供了一个高度模块化的内核架构,如图 1. 图1 Device Mappe ...

  5. openwrt系统源码地址

    https://dev.openwrt.org/wiki/GetSource http://www.openwrtdl.com/wordpress/openwrt-full-tutorial

  6. koa 项目实战(九)passport验证token

    1.安装模块 npm install koa-passport -D npm install passport-jwt -D 2.解析token 根目录/config/passport.js cons ...

  7. other备忘

    wps CONCATENATE 只是因为格式 设置成了文本,把这列 格式 设置成 常规,双击下 结果就出来了 https://zhidao.baidu.com/question/21208668961 ...

  8. css3_1

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. spring cloud之Eureka不能注销docker部署的实例

    1 起因 事件的起因是这样的,我们在微服务改造的过程中,选择将服务注册到eureka中,开发的时候还好,使用场景是这样的: 在idea中启动服务,成功注册到eureka,关闭服务,eureka成功注销 ...

  10. [CDH] Redis: Remote Dictionary Server

    基本概念 一.安装 Redis: Remote Dictionary Server 远程字典服务 使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种 ...