题目链接:

[SDOI2019]快速查询

对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和。

对于单点修改,将$a_{i}$修改为$val$,因为有序列标记,所以实际修改成$\frac{val-b}{k}$并开一个栈将这个位置压入栈中。

对于序列加和序列乘操作,直接修改标记与序列和即可,注意修改$k$时也要修改$b$。

对于序列赋值操作,将$k$赋成$0$,将$b$赋成$val$(即将操作看成先序列赋成$0$再序列加)并将之前压入栈中的数都弹出并清零(因为只有栈中的数和其他的不一样)。

查询时返回之前记录的值即可。因为每次单点修改只会进栈和出栈一次,所以可以保证序列赋值的时间复杂度。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int mod=10000019;
int n,m,t;
int s[10000010];
int v[100010];
int sum;
int cnt;
int ans;
int pls;
int mul=1;
int inv=1;
int ai,bi;
struct lty
{
int inv,val,opt,num;
}a[100010];
int quick(int x,int y)
{
int res=1;
while(y)
{
if(y&1)
{
res=1ll*res*x%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
void change(int x,int y)
{
sum=(sum+1ll*(mod-v[x])*mul+mod-pls)%mod;
v[x]=1ll*(y-pls+mod)*inv%mod,s[++cnt]=x;
sum=(sum+y)%mod;
}
void add(int x)
{
sum=(sum+1ll*n*x%mod)%mod;
pls=(pls+x)%mod;
}
void cover(int x)
{
while(cnt)v[s[cnt--]]=0;
mul=inv=1,pls=x;
sum=1ll*n*x%mod;
}
void multi(int x,int y)
{
if(x)
{
sum=1ll*sum*x%mod,mul=1ll*mul*x%mod;
pls=1ll*pls*x%mod,inv=1ll*inv*y%mod;
}
else
{
cover(0);
}
}
int query(int x)
{
if(x==0)return sum;
else return (1ll*v[x]*mul+pls)%mod;
}
int main()
{
scanf("%d%d",&n,&m);
n%=mod;
for(int i=1;i<=m;i++)
{
scanf("%d",&a[i].opt);
if(a[i].opt==1||a[i].opt==5)scanf("%d",&a[i].num),s[++cnt]=a[i].num;
if(a[i].opt<=4)scanf("%d",&a[i].val),a[i].val=(a[i].val%mod+mod)%mod,a[i].inv=quick(a[i].val,mod-2);
}
sort(s+1,s+1+cnt);
cnt=unique(s+1,s+1+cnt)-s-1;
for(int i=1;i<=m;i++)
{
if(a[i].opt==1||a[i].opt==5)
{
a[i].num=lower_bound(s+1,s+1+cnt,a[i].num)-s;
}
}
scanf("%d",&t);
cnt=0;
for(int i=1;i<=t;i++)
{
scanf("%d%d",&ai,&bi);
ai%=m,bi%=m;
for(int j=1;j<=m;j++)
{
int now=(ai+1ll*j*bi)%m+1;
if(a[now].opt==1)change(a[now].num,a[now].val);
if(a[now].opt==2)add(a[now].val);
if(a[now].opt==3)multi(a[now].val,a[now].inv);
if(a[now].opt==4)cover(a[now].val);
if(a[now].opt==5)ans=(ans+query(a[now].num))%mod;
if(a[now].opt==6)ans=(ans+query(0))%mod;
}
}
printf("%d",ans);
}

[SDOI2019]快速查询——模拟的更多相关文章

  1. [SDOI2019]快速查询

    [SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...

  2. luogu P5358 [SDOI2019]快速查询【模拟(?)】

    把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...

  3. 【洛谷5358】[SDOI2019] 快速查询(模拟)

    点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...

  4. vijos2051 SDOI2019 快速查询

    题目链接 吐槽 竟然让\(nlog\)的做法卡过去了.. 思路 因为\(1 \le q \le 10^5\),所以可以先对每个标准操作,所操作的位置进行重标号.这样所有的下标都是在\(10^5\)以内 ...

  5. 【题解】Luogu P5358 [SDOI2019]快速查询

    原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...

  6. SDOI2019快速查询

    链接 vijos 思路 虽然询问1e7,但他询问很有意思,所以最多修改1e5个. 先把他们修改的点缩小到1e5之内并没有什么影响. 然后维护mul和add.不修改很好弄,修改的点可以弄点式子加加减减弄 ...

  7. P5358 [SDOI2019]快速查询

    思路:...乱搞数据结构?? 提交:1次 题解: 观察到除了单点就是全局操作,所以我们维护一个全局加法标记add和乘法标记mul和答案sum. 单点修改时,比如我们要把 \(pos\) 位置改成 \( ...

  8. 快速查询List中指定的数据

    时间:2017/5/15 作者:李国君 题目:快速查询List中指定的数据 背景:当List中保存了大量的数据时,用传统的方法去遍历指定的数据肯定会效率低下,有一个方法就是类似于数据库查询那样,根据索 ...

  9. mysql 常用 sql 语句 - 快速查询

    Mysql 常用 sql 语句 - 快速查询 1.mysql 基础 1.1 mysql 交互         1.1.1 mysql 连接             mysql.exe -hPup    ...

随机推荐

  1. centos安装配置jdk

    本文以jdk8为例. 1.下载安装包 1.1.官网:https://www.oracle.com/technetwork/java/javase/downloads/index.html 1.2.登录 ...

  2. flutter入门之常见的flutter问题汇总(转)

    1. 使用AppBar后如何去掉左边的返回箭头.左边的图标对应的是leading,源代码如下(吐槽一下,CSDN暂不支持dart语言): Widget leading = widget.leading ...

  3. 从客户发送http请求到服务器返回http之间发生了什么

    由于我知识有限,可能会有模糊或者错误的地方,欢迎讨论与指正. 1.浏览器发出http请求 当用户访问一个url时,浏览器便会开始生成一个http请求. 首先获取http请求中所需要的参数,如url,c ...

  4. pandas(四)

    合并  merge,concat,join pd.merge(df1,df2,on=‘列名’,how='') df1.join(df2,how='outer',on='') pd.concat([df ...

  5. Computer Vision_33_SIFT:An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. IAR 为 STM32新建工程模板(最详细)

    今天给小伙伴分享一篇给stm32新建工程模版 1.首先打开IAR,就是这个样子 2.再建一个目录文件夹 3.建立一个工作空间,以及建好工作空间如右图所示 4.接下来建立工程,Project------ ...

  7. U盘损坏?

  8. Cache 和 Buffer 的区别在哪里

    Cache和Buffer是两个不同的概念,简单的说,Cache是加速“读”,而buffer是缓冲“写”,前者解决读的问题,保存从磁盘上读出的数据,后者是解决写的问题,保存即将要写入到磁盘上的数据.在很 ...

  9. 4.BeanFactory和ApplicationContext的区别

    ApplicationContext和BeanFactory都是用于加载Bean的, 但是二者之间存在区别, ApplicationContext能够提供更多的扩展功能. 1).BeanFactory ...

  10. Selenium常用API的使用java语言之2-环境安装之IntelliJ IDEA

    1.安装IntelliJ IDEA 你可能会问,为什么不用Eclipse呢?随着发展IntelliJ IDEA有超越Eclipse的势头,JetBrains公司的IDE基本上已经一统了各家主流编程语言 ...