# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_breast_cancer data_set = pd.read_csv('pima-indians-diabetes.csv')
data = data_set.values[:,:] y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y) ### 随机森林
print("==========================================")
RF = RandomForestClassifier(n_estimators=10,random_state=11)
RF.fit(X_train,y_train)
predictions = RF.predict(X_test)
print("RF")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Logistic Regression Classifier
print("==========================================")
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='l2')
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("LR")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Decision Tree Classifier
print("==========================================")
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("DT")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### GBDT(Gradient Boosting Decision Tree) Classifier
print("==========================================")
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(n_estimators=200)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("GBDT")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ###AdaBoost Classifier
print("==========================================")
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("AdaBoost")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### GaussianNB
print("==========================================")
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("GaussianNB")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Linear Discriminant Analysis
print("==========================================")
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Linear Discriminant Analysis")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Quadratic Discriminant Analysis
print("==========================================")
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
clf = QuadraticDiscriminantAnalysis()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Quadratic Discriminant Analysis")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### SVM Classifier
print("==========================================")
from sklearn.svm import SVC
clf = SVC(kernel='rbf', probability=True)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("SVM")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Multinomial Naive Bayes Classifier
print("==========================================")
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB(alpha=0.01)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Multinomial Naive Bayes")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### xgboost
import xgboost
print("==========================================")
from sklearn.naive_bayes import MultinomialNB
clf = xgboost.XGBClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("xgboost")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### voting_classify
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier, RandomForestClassifier
import xgboost
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
clf1 = GradientBoostingClassifier(n_estimators=200)
clf2 = RandomForestClassifier(random_state=0, n_estimators=500)
# clf3 = LogisticRegression(random_state=1)
# clf4 = GaussianNB()
clf5 = xgboost.XGBClassifier()
clf = VotingClassifier(estimators=[
# ('gbdt',clf1),
('rf',clf2),
# ('lr',clf3),
# ('nb',clf4),
# ('xgboost',clf5),
],
voting='soft')
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("voting_classify")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

sklearn常见分类器(二分类模板)的更多相关文章

  1. sklearn常见分类器的效果比较

    sklearn 是 python 下的机器学习库. scikit-learn的目的是作为一个“黑盒”来工作,即使用户不了解实现也能产生很好的结果. 其功能非常强大,当然也有很多不足的地方,就比如说神经 ...

  2. 基于sklearn的分类器实战

    已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部 ...

  3. sklearn 组合分类器

    组合分类器: 组合分类器有4种方法: (1)通过处理训练数据集.如baging  boosting (2)通过处理输入特征.如 Random forest (3)通过处理类标号.error_corre ...

  4. sklearn各种分类器简单使用

    sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict 下面的示例为在iris数据集上用各种分类器进行分类: #用各种方式在iris数据集上 ...

  5. python_mmdt:从0到1--实现简单恶意代码分类器(二)

    概述 上篇文章python_mmdt:一种基于敏感哈希生成特征向量的python库(一)我们介绍了一种叫mmdt_hash(敏感哈希)生成方法,并对其中的概念做了基本介绍.本篇,我们重点谈谈mmdt_ ...

  6. 常见模块(二) logging模块

    logging模块是专门做日志系统的.分为函数版和自定义函数. (一)logging模块初级版 缺点,不能指定字符集,不能把屏幕输出和文件日志同时记录.只能选择其一. 文件记录日志 import lo ...

  7. (6)UIView常见属性二

    例如创建一个view视图,view是最纯洁的控制,必须得指定它的位置,而不像其他的控件像UISwitch默认都有一个位置 在viewDidLoad方法中打印它的位置: 将控件放入一个视图中,只需移动白 ...

  8. Oracle面试过程中常见的二十个问题

    1.冷备份和热备份的不同点以及各自的优点  解答:热备份针对归档模式的数据库,在数据库仍旧处于工作状态时进行备份.而冷备份指在数据库关闭后,进行备份,适用于所有模式的数据库.热备份的优点在于当备份时, ...

  9. 讲解Oracle面试过程中常见的二十个问题

    1.冷备份和热备份的不同点以及各自的优点     解答:热备份针对归档模式的数据库,在数据库仍旧处于工作状态时进行备份.而冷备份指在数据库关闭后,进行备份,适用于所有模式的数据库.热备份的优点在于当备 ...

随机推荐

  1. Netty4实现JTT809对接

    网上的使用的netty版本过老,最近自己接触到这一块,重新写了一个 服务器流程 1,判定报文起始和结束标识 ,2去掉头尾标识进行转义,3,去掉CRC码进行CRC计算,4读取报文头,(5,如果加密则解密 ...

  2. Week08_day01 (Hive实现按照指定格式输出每七天的消费平均数)

    Hive实现按照指定格式输出每七天的消费平均数 数据准备 2018/6/1,10 2018/6/2,11 2018/6/3,11 2018/6/4,12 2018/6/5,14 2018/6/6,15 ...

  3. TODO:AppiumTestDistribution--CapabilityManager 类

    该类代码详见git:https://github.com/AppiumTestDistribution/AppiumTestDistribution/tree/master/src/main/java ...

  4. 一、vue基础--语法

      用到的前台编程工具是Visual Studio Code,暂时是官网下载vue.js到本地使用 一.Visual Studio Code需要安装的插件: jshint :js代码规范检查 Beau ...

  5. C#中一些常用的方法使用

    一.string.Empty string.Empty就相当于 "" ,一般用于字符串的初始化 , 比如: string a; Console.WriteLine(a);//这里会 ...

  6. Appium自动化测试教程-自学网-monkey简介

    Monkey简介 在Android的官方自动化测试领域有一只非常著名的“猴子”叫Monkey,这只“猴子”一旦启动,就会让被测的Android应用程序像猴子一样活蹦乱跳,到处乱跑.人们常用这只“猴子” ...

  7. window.open全屏显示

    将window.open(url,'','height=600,width=910,top=0,left=0,toolbar=no,menubar=no,scrollbars=yes,resizabl ...

  8. 《视觉SLAM十四讲》学习日志(二)——初识SLAM

    小萝卜机器人的例子: 就像这种机器人,它的下面有一组轮子,脑袋上有相机(眼睛),为了让它能够探索一个房间,它需要知道: 1.我在哪——定位 2.周围环境怎么样——建图 定位和建图可以理解成感知的 &q ...

  9. Print工具类

    这篇文章已经废弃. 实际开发中,打印信息只会用日志框架(Log4j2). 受到Thinking in Java中静态引入(import static)的启发, Deolin也打算写一个方便自己的工具类 ...

  10. League of Leesins

    C - League of Leesins 首先找到每一串数字的头和尾两个数字,这两个数字有一个特点,就是它们在输入数据的时候都只会出现一次.我们在输出的时候用头和尾做第一数都可以. 然后第二个数只会 ...