sklearn常见分类器(二分类模板)
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_breast_cancer data_set = pd.read_csv('pima-indians-diabetes.csv')
data = data_set.values[:,:] y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y) ### 随机森林
print("==========================================")
RF = RandomForestClassifier(n_estimators=10,random_state=11)
RF.fit(X_train,y_train)
predictions = RF.predict(X_test)
print("RF")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Logistic Regression Classifier
print("==========================================")
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='l2')
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("LR")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Decision Tree Classifier
print("==========================================")
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("DT")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### GBDT(Gradient Boosting Decision Tree) Classifier
print("==========================================")
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(n_estimators=200)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("GBDT")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ###AdaBoost Classifier
print("==========================================")
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("AdaBoost")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### GaussianNB
print("==========================================")
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("GaussianNB")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Linear Discriminant Analysis
print("==========================================")
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Linear Discriminant Analysis")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Quadratic Discriminant Analysis
print("==========================================")
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
clf = QuadraticDiscriminantAnalysis()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Quadratic Discriminant Analysis")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### SVM Classifier
print("==========================================")
from sklearn.svm import SVC
clf = SVC(kernel='rbf', probability=True)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("SVM")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### Multinomial Naive Bayes Classifier
print("==========================================")
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB(alpha=0.01)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Multinomial Naive Bayes")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### xgboost
import xgboost
print("==========================================")
from sklearn.naive_bayes import MultinomialNB
clf = xgboost.XGBClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("xgboost")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions)) ### voting_classify
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier, RandomForestClassifier
import xgboost
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
clf1 = GradientBoostingClassifier(n_estimators=200)
clf2 = RandomForestClassifier(random_state=0, n_estimators=500)
# clf3 = LogisticRegression(random_state=1)
# clf4 = GaussianNB()
clf5 = xgboost.XGBClassifier()
clf = VotingClassifier(estimators=[
# ('gbdt',clf1),
('rf',clf2),
# ('lr',clf3),
# ('nb',clf4),
# ('xgboost',clf5),
],
voting='soft')
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("voting_classify")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))
sklearn常见分类器(二分类模板)的更多相关文章
- sklearn常见分类器的效果比较
sklearn 是 python 下的机器学习库. scikit-learn的目的是作为一个“黑盒”来工作,即使用户不了解实现也能产生很好的结果. 其功能非常强大,当然也有很多不足的地方,就比如说神经 ...
- 基于sklearn的分类器实战
已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部 ...
- sklearn 组合分类器
组合分类器: 组合分类器有4种方法: (1)通过处理训练数据集.如baging boosting (2)通过处理输入特征.如 Random forest (3)通过处理类标号.error_corre ...
- sklearn各种分类器简单使用
sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict 下面的示例为在iris数据集上用各种分类器进行分类: #用各种方式在iris数据集上 ...
- python_mmdt:从0到1--实现简单恶意代码分类器(二)
概述 上篇文章python_mmdt:一种基于敏感哈希生成特征向量的python库(一)我们介绍了一种叫mmdt_hash(敏感哈希)生成方法,并对其中的概念做了基本介绍.本篇,我们重点谈谈mmdt_ ...
- 常见模块(二) logging模块
logging模块是专门做日志系统的.分为函数版和自定义函数. (一)logging模块初级版 缺点,不能指定字符集,不能把屏幕输出和文件日志同时记录.只能选择其一. 文件记录日志 import lo ...
- (6)UIView常见属性二
例如创建一个view视图,view是最纯洁的控制,必须得指定它的位置,而不像其他的控件像UISwitch默认都有一个位置 在viewDidLoad方法中打印它的位置: 将控件放入一个视图中,只需移动白 ...
- Oracle面试过程中常见的二十个问题
1.冷备份和热备份的不同点以及各自的优点 解答:热备份针对归档模式的数据库,在数据库仍旧处于工作状态时进行备份.而冷备份指在数据库关闭后,进行备份,适用于所有模式的数据库.热备份的优点在于当备份时, ...
- 讲解Oracle面试过程中常见的二十个问题
1.冷备份和热备份的不同点以及各自的优点 解答:热备份针对归档模式的数据库,在数据库仍旧处于工作状态时进行备份.而冷备份指在数据库关闭后,进行备份,适用于所有模式的数据库.热备份的优点在于当备 ...
随机推荐
- Error creating bean with name 'objectMapperConfigurer' defined in class path resource
- python3 基础二——基本的数据类型二
一.数字(Number) 1.Python支持三种不同的数值类型:整型(int),浮点型(float),复数(complex) 2.Python数字数据类型用于存储数值 3.数据类型是不允许改变的,这 ...
- Eclipse使用技巧小结
前言:自学Java以来,就一直用eclipse,这款ide深受广大新手和大牛喜爱.学会使用其中的技巧,越用越熟练,开发也就越快捷方便.话不多说,直接上小结吧. 一.快捷键 1.提示 :A|t+/ 2. ...
- spark job分析
spark job spark job提交 三级调度框架, DagSch,计算stage,提交阶段,将stage映射成taskset,提交taskset给tasksch. TaskSch Backen ...
- python3.6中 字典类型和字符串类型互相转换的方法
mydic = {"俄罗斯": {"1":"圣彼得堡", "2":"叶卡捷琳堡", "3& ...
- centos7.0利用yum快速安装mysql8.0
我这里直接使用MySQL Yum存储库的方式快速安装: 抽象 MySQL Yum存储库提供用于在Linux平台上安装MySQL服务器,客户端和其他组件的RPM包.这些软件包还可以升级和替换从Linux ...
- 13、生命周期-InitializingBean和DisposableBean
13.生命周期-InitializingBean和DisposableBean InitializingBean接口 package org.springframework.beans.factory ...
- python自动华 (四)
Python自动化 [第四篇]:Python基础-装饰器 生成器 迭代器 Json & pickle 目录: 装饰器 生成器 迭代器 Json & pickle 数据序列化 软件目录结 ...
- P1578 奶牛浴场 有障碍点的最大子矩形
这题咕咕了很久终于写了\(QwQ\) 思路:扫? 提交:2次 错因:数据差评,第一次把矩形的长宽搞反了竟然只有一个点没有\(A\). 题解: 显然能成为答案的矩形的边界一定有障碍点或者与大矩形边界重合 ...
- [git]本地分支关联远程仓库
远程仓库中分支存在 方法一:(已经创建了本地分支) git branch --set-upstream-to=origin/remote_branch your_branch //等同于 git br ...