Python/ selectors模块及队列
Python/selectors模块及队列
selectors模块是可以实现IO多路复用机制:
它具有根据平台选出最佳的IO多路机制,比如在win的系统上他默认的是select模式而在linux上它默认的epoll。
常用共分为三种: select、poll、epoll
select的缺点:
1、每次调用都要将所有的文件描述符(fd)拷贝的内核空间,导致效率下降
2、遍历所有的文件描述符(fd)查看是否有数据访问
3、最大链接数限额(1024)
poll:
它就是select和epoll的过渡阶段,它没有最大链接数的限额
epoll:
1、第一个函数是创建一个epoll句柄,将所有的描述符(fd)拷贝到内核空间,但只拷贝一次。
2、回调函数,某一个函数或某一个动作成功完成之后会触发的函数为所有的描述符(fd)绑定一个回调函数,一旦有数据访问就是触发该回调函数,回调函数将(fd)放到链表中
3、函数判断链表是否为空
4、最大启动项没有限额
selsect实例:
服务端
import selectors #基于select模块实现的IO多路复用,建议大家使用
import socket
sock=socket.socket()
sock.bind(('127.0.0.1',8800))
sock.listen(5)
sock.setblocking(False)
sel=selectors.DefaultSelector() #根据平台选择最佳的IO多路机制,比如linux就会选择epoll def read(conn,mask):
try:
data=conn.recv(1024)
print(data.decode('utf8'))
data2=input('>>>>')
conn.send(data2.encode('utf8'))
except Exception:
sel.unregister(conn) def accept(sock,mask):
conn,addr=sock.accept()
print('-------',conn)
sel.register(conn,selectors.EVENT_READ,read)
sel.register(sock, selectors.EVENT_READ, accept) #注册功能
while True:
print('wating....')
events=sel.select() #[(sock),(),()] 监听 for key,mask in events:
# print(key.data) #accept 找出有活动的绑定函数
# print(key.fileobj) #sock 找出有活动的文件描述符 func=key.data
obj=key.fileobj func(obj,mask) #1 accept(sock,mask) 2read(conn,mask)
------------------------------------------------------------------------------
客户端
import socket
tin=socket.socket()
tin.connect(('127.0.0.1',8800))
while True:
inp=input('>>>>')
tin.send(inp.encode('utf8'))
data=tin.recv(1024)
print(data.decode('utf8'))
队列:
队列分为(先进先出、后进先出) 队列是一个数据类型,可以进行数据储存功能 队列可以实现耦合的效果,比如有个人A把包子放到锅里,在有个人B把包子从锅里拿出来。现在的锅就是队列的效果。
实例如下:
import queue
q=queue.Queue() #默认的先进先出
q.put(111) #往管道里放一个值
q.put(222) #往管道里放一个值
q.put(333) #往管道里放一个值 print(q.get()) #从管道里拿一个值
print(q.get()) #从管道里拿一个值
print(q.get()) #从管道里拿一个值
-----------------------------------------------
运行结果
111
222
333
join和tast_done
import queue
q=queue.Queue() #默认的先进先出
q.put(111) #往管道里放一个值
q.task_done() #解除阻塞
q.put(222) #往管道里放一个值
q.task_done() #解除阻塞
q.put(333) #往管道里放一个值
q.task_done() #解除阻塞
q.join() #队列阻塞功能
print(q.get()) #从管道里拿一个值
print(q.get()) #从管道里拿一个值
print(q.get()) #从管道里拿一个值
join和tast_done 功能
如果有俩个put功能,在get的前边有join功能的话,在俩个put的后边要进行一个task_done才能执行。
生产者消费者模型:
在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。
生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。
这就像,在餐厅,厨师做好菜,不需要直接和客户交流,而是交给前台,而客户去饭菜也不需要不找厨师,直接去前台领取即可,这也是一个结耦的过程。
import time,random
import queue,threading q = queue.Queue() def Producer(name):
count = 0
while count <10:
print("making........")
time.sleep(random.randrange(3))
q.put(count)
print('Producer %s has produced %s baozi..' %(name, count))
count +=1
#q.task_done()
#q.join()
print("ok......")
def Consumer(name):
count = 0
while count <10:
time.sleep(random.randrange(4))
if not q.empty():
data = q.get()
#q.task_done()
#q.join()
print(data)
print('\033[32;1mConsumer %s has eat %s baozi...\033[0m' %(name, data))
else:
print("-----no baozi anymore----")
count +=1 p1 = threading.Thread(target=Producer, args=('A',))
c1 = threading.Thread(target=Consumer, args=('B',))
# c2 = threading.Thread(target=Consumer, args=('C',))
# c3 = threading.Thread(target=Consumer, args=('D',))
p1.start()
c1.start()
# c2.start()
# c3.start()
这个生产消费者就是通过列表的形式把输入和获取进行耦合操作!
Python/ selectors模块及队列的更多相关文章
- Python - selectors 模块
selectors 模块 它的功能与 linux 的 epoll,还是 select 模块, poll 等类似: 实现高效的 I/O multiplexing , 常用于非阻塞的 socket ...
- python selectors模块实现 IO多路复用机制的上传下载
import selectorsimport socketimport os,time BASE_DIR = os.path.dirname(os.path.abspath(__file__))''' ...
- python多线程编程(6): 队列同步
原文请看:http://www.cnblogs.com/holbrook/archive/2012/03/15/2398060.html 前面介绍了互斥锁和条件变量解决线程间的同步问题,并使用条件变量 ...
- Python第十五天 datetime模块 time模块 thread模块 threading模块 Queue队列模块 multiprocessing模块 paramiko模块 fabric模块
Python第十五天 datetime模块 time模块 thread模块 threading模块 Queue队列模块 multiprocessing模块 paramiko模块 fab ...
- Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures
参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...
- (转)python异步编程--回调模型(selectors模块)
原文:https://www.cnblogs.com/zzzlw/p/9384308.html#top 目录 0. 参考地址 1. 前言 2. 核心类 3. SelectSelector核心函数代码分 ...
- python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)
昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...
- python异步编程--回调模型(selectors模块)
目录 0. 参考地址 1. 前言 2. 核心类 3. SelectSelector核心函数代码分析 3.1 注册 3.2 注销 3.3 查询 4. 别名 5. 总结 6. 代码报错问题 1. 文件描述 ...
- python threading模块使用 以及python多线程操作的实践(使用Queue队列模块)
今天花了近乎一天的时间研究python关于多线程的问题,查看了大量源码 自己也实践了一个生产消费者模型,所以把一天的收获总结一下. 由于GIL(Global Interpreter Lock)锁的关系 ...
随机推荐
- mui底部导航栏切换分页
使用Hbuilder的mui框架开发移动端非常便利.高效: 底部导航栏切换功能也是移动APP开发中必须实现的: 引入mui文件.下面会用到jquery,同时引进 <link href=" ...
- 数据模型LP32 ILP32 LP64 LLP64 ILP64
各个C++实现所选择采用的基础类型的大小统称为"数据模型".有四种广泛采用的数据模型: 32 位系统: LP32 或 2/4/4(int 为 16-bit,long 和指针为 32 ...
- 交换排序—快速排序(Quick Sort)
基本思想: 1)选择一个基准元素,通常选择第一个元素或者最后一个元素, 2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小.另一部分记录的 元素值比基准值大. 3 ...
- 使用export/import导出和导入docker容器
1.导出容器 如果要导出本地某个容器,可以使用 docker export 命令,导出容器快照到本地文件. $ sudo docker ps -a CONTAINER ID IMAGE ...
- #Python3.6.2(32位) pip安装 和 pygame 环境配置
#首先确认电脑已经安装python ,可通过在命令行下 执行 python --version确认. 1. 到 https://pypi.python.org/pypi/setuptools/ 下载 ...
- iOS 跑马灯带图片可点击
项目中有个需求,需要以跑马灯的形势滚动展示用户的实时数据,跑马灯需要有用户头像,内容的长度不固定,并且可以点击,滚动效果还要足够流畅,本着不重复造轮子的心理,在网上各种搜索,发现都没法找到满足需求的d ...
- PHP 相对完整的分页
效果链接http://love.bjxxw.com/oejiaoyou/pubu/zhaopian.php php 分页 <?php /* * * * 说明 吉海波 2015/9/17 * $p ...
- oracle exp(expdp)数据迁移(生产环境,进行数据对比校验)
前言:客户需要迁移XX 库 ZJJJ用户(迁移到其他数据库),由于业务复杂,客户都弄不清楚里面有哪些业务系统,为保持数据一致性,需要停止业务软件,中间件,杀掉oracle进程. 一.迁移数据倒出部分= ...
- MyAdapter Andriod
private List<T> listdate;//定义数据对象 //为了获取item中的点击事件定义ViewHolderprivate static class ViewHolder ...
- Alpha冲刺Day5
Alpha冲刺Day5 一:站立式会议 今日安排: 首先由于经过黄腾飞短暂的测试,发现导入导出仍然有一些问题,今天需要进行完善 由黄腾飞负责企业自查风险管理子模块,要求为单元进行风险点的管理 由张梨贤 ...