[LeetCode] Couples Holding Hands 两两握手
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).
The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.
Note:
len(row)is even and in the range of[4, 60].rowis guaranteed to be a permutation of0...len(row)-1.
这道题给了我们一个长度为n的数组,里面包含的数字是 [0, n-1] 范围内的数字各一个,让我们通过调换任意两个数字的位置,使得相邻的奇偶数靠在一起。因为要两两成对,所以题目限定了输入数组必须是偶数个。我们要明确的是,组成对儿的两个是从0开始,每两个一对儿的。比如0和1,2和3,像1和2就不行。而且检测的时候也是两个数两个数的检测,左右顺序无所谓,比如2和3,或者3和2都行。当我们暂时对如何用代码来解决问题没啥头绪的时候,一个很好的办法是,先手动解决问题,意思是,假设这道题不要求你写代码,就让你按照要求排好序怎么做。我们随便举个例子来说吧,比如:
[3 1 4 0 2 5]
我们如何将其重新排序呢?首先明确,我们交换数字位置的动机是要凑对儿,如果我们交换的两个数字无法组成新对儿,那么这个交换就毫无意义。来手动交换吧,我们两个两个的来看数字,前两个数是3和1,我们知道其不成对儿,数字3的老相好是2,不是1,那么怎么办呢?我们就把1和2交换位置呗。好,那么现在3和2牵手成功,度假去了,再来看后面的:
[3 2 4 0 1 5]
我们再取两数字,4和0,互不认识!4跟5有一腿儿,不是0,那么就把0和5,交换一下吧,得到:
[3 2 4 5 1 0]
好了,再取最后两个数字,1和0,两口子,不用动!前面都成对的话,最后两个数字一定成对。而且这种方法所用的交换次数一定是最少的,不要问博主怎么证明,博主也不会|||-.-~明眼人应该已经看出来了,这就是一种贪婪算法Greedy Algorithm。思路有了,代码就很容易写了,注意这里在找老伴儿时用了一个trick,一个数‘异或’上1就是其另一个位,这个不难理解,如果是偶数的话,最后位是0,‘异或’上1等于加了1,变成了可以的成对奇数。如果是奇数的话,最后位是1,‘异或’上1后变为了0,变成了可以的成对偶数。参见代码如下:
解法一:
class Solution {
public:
int minSwapsCouples(vector<int>& row) {
int res = , n = row.size();
for (int i = ; i < n; i += ) {
if (row[i + ] == (row[i] ^ )) continue;
++res;
for (int j = i + ; j < n; ++j) {
if (row[j] == (row[i] ^ )) {
row[j] = row[i + ];
row[i + ] = row[i] ^ ;
break;
}
}
}
return res;
}
};
下面我们来看一种使用联合查找Union Find的解法。该解法对于处理群组问题时非常有效,比如岛屿数量有关的题就经常使用UF解法。核心思想是用一个root数组,每个点开始初始化为不同的值,如果两个点属于相同的组,就将其中一个点的root值赋值为另一个点的位置,这样只要是相同组里的两点,通过find函数会得到相同的值。 那么如果总共有n个数字,则共有 n/2 对儿,所以我们初始化 n/2 个群组,我们还是每次处理两个数字。每个数字除以2就是其群组号,那么属于同一组的两个数的群组号是相同的,比如2和3,其分别除以2均得到1,所以其组号均为1。那么这对解题有啥作用呢?作用忒大了,由于我们每次取的是两个数,且计算其群组号,并调用find函数,那么如果这两个数的群组号相同,那么find函数必然会返回同样的值,我们不用做什么额外动作,因为本身就是一对儿。如果两个数不是一对儿,那么其群组号必然不同,在二者没有归为一组之前,调用find函数返回的值就不同,此时我们将二者归为一组,并且cnt自减1,忘说了,cnt初始化为总群组数,即 n/2。那么最终cnt减少的个数就是交换的步数,还是用上面讲解中的例子来说明吧:
[3 1 4 0 2 5]
最开始的群组关系是:
群组0:0,1
群组1:2,3
群组2:4,5
取出前两个数字3和1,其群组号分别为1和0,带入find函数返回不同值,则此时将群组0和群组1链接起来,变成一个群组,则此时只有两个群组了,cnt自减1,变为了2。
群组0 & 1:0,1,2,3
群组2:4,5
此时取出4和0,其群组号分别为2和0,带入find函数返回不同值,则此时将群组0&1和群组2链接起来,变成一个超大群组,cnt自减1,变为了1。
群组0 & 1 & 2:0,1,2,3,4,5
此时取出最后两个数2和5,其群组号分别为1和2,因为此时都是一个大组内的了,带入find函数返回相同的值,不做任何处理。最终交换的步数就是cnt减少值,为2,参见代码如下:
解法二:
class Solution {
public:
int minSwapsCouples(vector<int>& row) {
int res = , n = row.size(), cnt = n / ;
vector<int> root(n, );
for (int i = ; i < n; ++i) root[i] = i;
for (int i = ; i < n; i += ) {
int x = find(root, row[i] / );
int y = find(root, row[i + ] / );
if (x != y) {
root[x] = y;
--cnt;
}
}
return n / - cnt;
}
int find(vector<int>& root, int i) {
return (i == root[i]) ? i : find(root, root[i]);
}
};
下面这种使用HashMap的解法,本质其实也是联合查找Union Find。我们知道只有群组里面是数字,才能使用root数组,有些非数字的情况,比如字符串,就要使用HashMap了,当然数字也是可以使用HashMap的。我们这里的helper子函数相当于同时包括了链接群组和find查找两部分,在主函数中,我们还是两个两个处理,并且把群组号带入helper函数,在helper函数中,我们将较小数和较大数区分出来,如果二者相同,表明是同一个群组的,不做任何处理,直接返回。否则的话,建立二者的映射,这就是上面解法中的链接群组操作,这样看出来了吧,二者的本质其实是一样的,参见代码如下:
解法三:
class Solution {
public:
int minSwapsCouples(vector<int>& row) {
unordered_map<int, int> m;
for (int i = ; i < row.size(); i += ) {
helper(m, row[i] / , row[i + ] / );
}
return m.size();
}
void helper(unordered_map<int, int>& m, int x, int y) {
int c1 = min(x, y), c2 = max(x, y);
if (c1 == c2) return;
if (m.count(c1)) helper(m, m[c1], c2);
else m[c1] = c2;
}
};
这道题的一个Follow up就是fun4LeetCode大神的帖子中讨论的N整数问题 N Integers Problems,简单来说就是最少使用几步可以将所有的数字移回其正确位置,比如数组 [0 3 1 2] 变回 [0 1 2 3] 需要几步,两步就够了,先交换3和2,变成 [0 2 1 3],再交换2和1,变回 [0 1 2 3]。怎么做呢?实际上在遍历某一个位置i,如果发现 i != rows[i],我们就不同的通过交换i和rows[i],然后让 row[i] 等于 row[row[i]],使其最终相等,是不是也有点Union Find的影子在里面呢?真是很有趣呢~面白以~
类似题目:
参考资料:
https://leetcode.com/problems/couples-holding-hands/solution/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Couples Holding Hands 两两握手的更多相关文章
- Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands)
Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands) N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并 ...
- TCP为什么不是两次握手而是三次?
为什么不采用两次握手?如果是两次握手的情景:客户端在发送一个连接建立请求之后进入等待状态,等到服务端确认之后就进入established状态.服务端在发送一个确认连接建立请求报文之后(不管客户端是否有 ...
- TCP两次握手
TCP的三次握手已经说烂了,TCP为何要三次握手?为何不两次握手也有很多说法.对于这些类似的问题,最好的办法是看RFC 常规思路,由面到点 两军问题 在不可靠通信下,两军想要达到状态一致是无解的.因为 ...
- LeetCode(1): 两数之和
本内容为LeetCode第一道题目:两数之和 # -*- coding: utf-8 -*- """ Created on Sun Mar 10 19:57:18 201 ...
- LeetCode(2): 两数相加
本内容为LeetCode第二道题目:两数相加 # -*- coding: utf-8 -*- """ Created on Sun Mar 10 10:47:12 201 ...
- 【LeetCode题解】24_两两交换链表中的节点(Swap-Nodes-in-Pairs)
目录 描述 解法一:迭代 思路 Java 实现 Python 实现 复杂度分析 解法二:递归(不满足空间复杂度要求) 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解 ...
- 【LeetCode】Swap Nodes in Pairs(两两交换链表中的节点)
这是LeetCode里的第24题. 题目要求: 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 示例: 给定1->2->3->4, 你应该返回2->1->4- ...
- Leetcode之二分法专题-167. 两数之和 II - 输入有序数组(Two Sum II - Input array is sorted)
Leetcode之二分法专题-167. 两数之和 II - 输入有序数组(Two Sum II - Input array is sorted) 给定一个已按照升序排列 的有序数组,找到两个数使得它们 ...
- Leetcode(4)寻找两个有序数组的中位数
Leetcode(4)寻找两个有序数组的中位数 [题目表述]: 给定两个大小为 m 和 n 的有序数组 nums1 和* nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O( ...
随机推荐
- Android实用代码七段(三)
正文 一.获取已经安装APK的路径 PackageManager pm = getPackageManager(); for (ApplicationInfo app : pm.getInstall ...
- android scrollview 属性
理论部分1.ScrollView和HorizontalScrollView是为控件或者布局添加滚动条2.上述两个控件只能有一个孩子,但是它并不是传统意义上的容器3.上述两个控件可以互相嵌套4.滚动条 ...
- 腾讯云python网站开发环境搭建
前段时间腾讯云做活动,于是就花了几百大洋买了三年的云服务,准备在上 面安装python web的开发环境,下面将安装过程做一个总结,希望能够帮助大家. 一.使用环境 使用的软件环境为:CentOS ...
- C语言-最后一次作业
1.当初你是如何做出选择计算机专业的决定的? 经过一个学期,你的看法改变了么,为什么? 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 我当初选择计算机专业是因为我是真的很向往计算机这方 ...
- Alpha冲刺Day4
Alpha冲刺Day4 一:站立式会议 今日安排: 我们把项目大体分为四个模块:数据管理员.企业人员.第三方机构.政府人员.完成了数据库管理员模块.因企业人员与第三方人员模块存在大量的一致性,故我们团 ...
- TOTP算法 基于时间的一次性密码
/** Copyright (c) 2011 IETF Trust and the persons identified as authors of the code. All rights rese ...
- Hibernate之缓存
Hibernate为了解决频繁查询数据的效率问题,提供了三种级别的缓存 1.一级缓存 一级缓存 又叫 session缓存 .Session对象会缓存处于持久化状态的每个对象 ,如果下次想用数据表中同一 ...
- 多种在线地图综合对比,Google,必应,arcgis Online...
不同网络地图的对比 天地图 坐标系:WGS84 地图配色: POI数量:丰富 有无建筑:有 地图特点:天地图按照国家标准进行配图,道路.水系.植被等图层用对应颜色渲染, POI信息丰富, ...
- socket , 套接口还是套接字,傻傻分不清楚
socket 做网络通信的朋友大都对socket这个词不会感到陌生,但是它的中文翻译是叫套接口还是套接字呢,未必大多数朋友能够分清,今天我们就来聊聊socket的中文名称. socket一词的起源 在 ...
- 织梦cms/dedecms清理冗余废弃未引用图片方法
原理描述: 在原有织梦后台菜单中增加"清理冗余图片按钮",实现清理冗余图片的功能. 操作步骤: 1. 打开后台dede\sys_sql_query.php代码 在该文件中搜索如下代 ...