Description

设有N*N的方格图,我们将其中的某些方格填入正整数,
而其他的方格中放入0。

某人从图得左上角出发,可以向下走,也可以向右走,直到到达右下角。

在走过的路上,他取走了方格中的数。(取走后方格中数字变为0)
此人从左上角到右下角共走3次,试找出3条路径,使得取得的数总和最大。

Input

第一行:N (4<=N<=20)
接下来一个N*N的矩阵,矩阵中每个元素不超过80,不小于0

Output

一行,表示最大的总和。

Sample Input

4
1 2 3 4
2 1 3 4
1 2 3 4
1 3 2 4

Sample Output

39

题解(转载)

->原文地址<-

$DP$好题。

这里给出费用流的做法:

拆点建图,每一个点都拆成两个点,在这里就称为出点和入点。

出点和入点建两条边,一条费用为$s[i][j]$,流量为$1$;一条费用为$0$,流量为$inf$。(分别表示选择这个点和从这个点上经过)

将$(i,j)$的出点分别和$(i+1,j)$$(i,j+1)$的入点建边,流量为$inf$,费用为$0$。(表示行进)

跑一边最大费用最大流就可以了。

 #include <set>
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int INF = ~0u>>; int n;
int a[][];
struct tt{
int to, cost, next, cap;
}edge[];
int path[], top = -;
void Add(int u, int v, int cost, int cap);
int sta = , fin = ;
int min_cost_flow();
int SPFA(); int main(){
memset(path, -, sizeof(path));
scanf("%d", &n);
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
scanf("%d", &a[i][j]);
for (int i = ; i < n; i++)
for (int j = ; j < n; j++){
Add(i*n+j, (i+n)*n+j, a[i][j], );
Add(i*n+j, (i+n)*n+j, , INF);
if (i != n-) Add((i+n)*n+j, (i+)*n+j, , INF);
if (j != n-) Add((i+n)*n+j, i*n+j+, , INF);
}
Add(sta, , , );
Add((*n-)*n+n-, fin, ,);
printf("%d\n", min_cost_flow());
return ;
} void Add(int u, int v, int cost, int cap){
edge[++top].to = v;
edge[top].cost = cost;
edge[top].cap = cap;
edge[top].next = path[u];
path[u] = top;
edge[++top].to = u;
edge[top].cost = -cost;
edge[top].cap = ;
edge[top].next = path[v];
path[v] = top;
}
int min_cost_flow(){
int tolcost = ;
int tmp;
while (tmp = SPFA()) tolcost += tmp;
return tolcost;
}
int SPFA(){
int dist[];
memset(dist, , sizeof(dist)); dist[sta] = ; dist[fin] = -INF;
bool vis[] = {}; vis[sta] = ;
queue<int>Q;
while (!Q.empty()) Q.pop();
Q.push(sta);
int pre[] = {};
while (!Q.empty()){
   int u = Q.front(); Q.pop(); vis[u]=;
   for (int i = path[u]; i != -; i = edge[i].next){
   int v = edge[i].to;
   if (dist[v] < dist[u]+edge[i].cost && edge[i].cap > ){
     dist[v] = dist[u]+edge[i].cost;
     pre[v] = i;
     if (!vis[v]){
     vis[v] = ;
     Q.push(v);
     }
   }
   }
}
if (dist[fin] == -INF) return ;
int minflow = INF;
for (int i = fin; i != sta; i = edge[pre[i]^].to)
   minflow = Min(minflow, edge[pre[i]].cap);
for (int i = fin; i != sta; i = edge[pre[i]^].to)
   edge[pre[i]].cap -= minflow,
   edge[pre[i]^].cap += minflow;
return dist[fin];
}

[Vijos 1143]三取方格数的更多相关文章

  1. 【动态规划】Vijos P1143 三取方格数(NOIP2000提高组)

    题目链接: https://vijos.org/p/1143 题目大意: NxN的矩阵,每个值只能取一次,从(1,1)走到(n,n)走三次能取得的最大值. 题目思路: [动态规划] f[x1][y1] ...

  2. begin.BZOJ 1383: 三取方格数

    题目链接:传送门 题目大意:给你一个矩阵,每个格子有一个值,现在你要从左上角走到右下角(走3次),使得经过路径的权值和最大. 每个格子的值只能取一次,取完后变为0,输出走完三次后最大的权值和. 题目思 ...

  3. POJ 3422 Kaka's Matrix Travels (K取方格数:最大费用流)

    题意 给出一个n*n大小的矩阵,要求从左上角走到右下角,每次只能向下走或者向右走并取数,某位置取过数之后就只为数值0,现在求解从左上角到右下角走K次的最大值. 思路 经典的费用流模型:K取方格数. 构 ...

  4. Luogu2045 方格取数加强版(K取方格数) 费用流

    题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...

  5. poj 3422 洛谷P2045 K取方格数(方格取数加强版)

    Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...

  6. POJ 3422 Kaka's Matrix Travels K取方格数

    题目:给出n*n的方格矩阵,现在从左上方走m次到右下方,问m次能够获得的最大价值和. 分析:最大费用流.拆点进行限制每个格子只取一次,假设点x拆成 x,xx,右边(假设有)y,yy,下方(假设有)z, ...

  7. vijos 1563 疯狂的方格取数

    P1653疯狂的方格取数 Accepted 标签:天才的talent[显示标签]   背景 Due to the talent of talent123,当talent123做完NOIP考了两次的二取 ...

  8. php实现求数组中出现次数超过一半的数字(isset($arr[$val]))(取不同数看剩)(排序取中)

    php实现求数组中出现次数超过一半的数字(isset($arr[$val]))(取不同数看剩)(排序取中) 一.总结 1.if(isset($arr[$val])) $arr[$val]++; //1 ...

  9. 一个hin秀的小学三年级奥数题 [hin秀]

    ~~~~~~不知为何总会被小学的题虐哭QAQ,真的秀啊,毒害广大小朋友~~~~~~ 一个hin秀的小学三年级奥数题    [hin秀] 题目: 给出一个无限大的棋盘  n×n  (n>0 , 是 ...

随机推荐

  1. c语言第五次作业--函数

    一.PTA实验作业 题目1.使用函数输出一个整数的逆序数 1.本题PTA提交列表 2.设计思路 1.int mod,rever:分别表示余数和返回的数 2.while(number%10 || num ...

  2. OO第一次总结

    第一次作业: 第一次作业的指导书发下来之后我按着上面的步骤一步一步的做了之后发现项目拉下来了,怎么开始码代码呢...然后在舍友的帮助下才知道怎么建包建类,然后对Java的语法又不是很了解,于是就先把C ...

  3. Win10下, TortoiseGit安装及配合Gitee使用完整版

    Windows10下, TortoiseGit的安装及使用, 并配合Gitee码云使用! 1) 安装TortoiseGit 官网, 32位, 64位, 自选 https://tortoisegit.o ...

  4. h5图片上传预览

    项目中常用到文件上传预览功能,整理一下:如果不想使用 type="file" 的默认样式,可以让其覆盖在一个按钮样式上边,设其透明度为0,或者使用Label关联 html < ...

  5. vue-cli webpack3扩展多模块打包

    场景 在实际的项目开发中会出现这样的场景,项目中需要多个模块(单页或者多页应用)配合使用的情况,而vue-cli默认只提供了单入口打包,所以就想到对vue-cli进行扩展 实现 首先得知道webpac ...

  6. js控制表格实时编辑

    点击添加,在表格的最后一行添加一行表单元素,右侧按钮变为保存和取消.(点击保存,数据用ajax无刷新添加到界面,点击取消,取消此行的添加.)点击编辑,在本行改为表单,带有原来的值,右侧按钮变为确认和取 ...

  7. MicrosoftWebInfrastructure 之坑

    从svn下载下来的项目,还原提示缺少MicrosoftWebInfrastructure   包 网上大多数解决方法  PM> Install-Package Microsoft.Web.Inf ...

  8. Linux--慕课学习

    刚开始接触Linux,很有幸的在慕课网上看到了Peter老师的Linux入门课程,老师讲课真的式行云流水,深入浅出,循循善诱,层层递进. 老师分享的都是自己多年来总结的经验.看完之后也学到了很多东西. ...

  9. Django之中间件

    中间件简介 什么是中间件 中间件是一个用来处理Django的请求和响应的框架级别的钩子.它是一个轻量.低级别的插件系统,用于在全局范围内改变Django的输入和输出.每个中间件组件都负责做一些特定的功 ...

  10. Java面向对象之封装 入门实例(一)

    一.基础概念 (一)面向对象的三大特征:      1.封装         2.继承          3.多态 (二)封装:隐藏实现细节,对外提供公共的访问方式(接口). 封装的体现之一:将属性都 ...