传送门

题意:转换成斜率然后维护区间的上升序列(从区间第一个数开始的单调上升序列)


区间保存这个区间的最长序列的长度$ls$和最大值$mx$

如何合并两个区间信息?

左区间一定选择,右区间递归寻找第一个大于左区间最大值$v$的位置

具体来看,如果右区间的左最大值$<v$那么左面不可能选递归右面

否则这个区间所选的右面一定选,减去左面的$ls$再递归左面

合并复杂度$O(logn)$,总复杂度$O(nlog^2n)$

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define lc x<<1
#define rc x<<1|1
#define mid ((l+r)>>1)
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,Q,a,b;
struct Node{
int ls;
double mx;
Node():ls(),mx(0.0){}
}t[N<<];
int cal(int x,int l,int r,double v){
if(l==r) return t[x].mx>v;
if(t[lc].mx<=v) return cal(rson,v);
else return t[x].ls-t[lc].ls+cal(lson,v);
}
inline void merge(int x,int l,int r){
t[x].mx=max(t[lc].mx,t[rc].mx);
t[x].ls=t[lc].ls+cal(rson,t[lc].mx);
}
void segCha(int x,int l,int r,int p,double v){
if(l==r) t[x].ls=,t[x].mx=v;
else{
if(p<=mid) segCha(lson,p,v);
if(mid<p) segCha(rson,p,v);
merge(x,l,r);
}
}
int main(){
freopen("in","r",stdin);
n=read();Q=read();
while(Q--){
a=read();b=read();
segCha(,,n,a,(double)b/a);
printf("%d\n",t[].ls);
}
}

BZOJ 2957: 楼房重建 [线段树 信息合并]的更多相关文章

  1. BZOJ 2957 楼房重建(线段树区间合并)

    一个显而易见的结论是,这种数字的值是单调递增的.我们修改一个数只会对这个数后面的数造成影响.考虑线段树划分出来的若干线段. 这里有两种情况: 1.某个线段中的最大值小于等于修改的数,那么这个线段的贡献 ...

  2. bzoj 2957: 楼房重建 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...

  3. bzoj 2957: 楼房重建 ——线段树

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  4. bzoj 2957 楼房重建 (线段树+思路)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...

  5. BZOJ 2957楼房重建

    传送门 线段树 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include< ...

  6. [BZOJ29957] 楼房重建 - 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3294  Solved: 1554[Submit][Status][Discus ...

  7. [BZOJ 2957]楼房重建(THU2013集训)(线段树维护单调栈)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 根据题意,就是比较斜率大小 只看一段区间的话,那么这段区间能看见的楼房数量就是这 ...

  8. BZOJ 2957 楼房重建 (线段树)

    题目链接  楼房重建 解题思路:我们可以把楼房的最高点的斜率计算出来.那么问题就转化成了实时查询x的个数,满足数列x的左边没有大于等于x的数. 我们可以用线段树维护 设t[i]为如果只看这个区间,可以 ...

  9. bzoj 2957: 楼房重建【线段树】

    总之就是找前面所有点的斜率都严格小于这个点的这样的点的个数 不管是询问还是修改都非常线段树啊,而且相当眼熟是不是和hotel有点像啊,大概就是区间内记一个len一个max,分别是当前区间答案和区间最大 ...

随机推荐

  1. c# for 和 foreach 的区别

    foreach 能够进行foreach的类型结构,都必须实现IEnumerable接口. IEnumerable接口,有一个GetEnumerator的方法,返回一个实现IEnumerator接口的对 ...

  2. node & grunt path处理相关

    在nodejs平台上写一些工具或者服务, 有很多需求会涉及到对目录或者文件路径的处理和操作.整理一些常用的处理path的方法 1.global __dirname Example: running n ...

  3. electron 学习笔记

    一.快速搭建一个electron 项目结构 # 克隆示例项目的仓库 $ git clone https://github.com/electron/electron-quick-start # 进入这 ...

  4. NSUserDefaults standardUserDefaults使用注意事项

    NSUserDefaults可以存储NSString,NSNumber, NSDate, NSArray, NSDictionary,自定义类可以通过NSData的方式进行存储,当然要实现NSCodi ...

  5. 我的java学习之路--Java注解专题

    学习网址:http://www.imooc.com/video/8861 1.引言 2.Java中的常见注解 JDK自带注解:<br>@Override @Deprecated @Supp ...

  6. myeclipse编码

    window --->perferences

  7. JavaScript对象的valueOf()方法

    js对象中的valueOf()方法和toString()方法非常类似,但是,当需要返回对象的原始值而非字符串的时候才调用它,尤其是转换为数字的时候.如果在需要使用原始值的上下文中使用了对象,JavaS ...

  8. flannel 网络问题排查

    1. 如果你发现 k8s容器无法访问外网? 重启docker 原因是,docker重启后会重新生成网桥.网络不通的原因是flannel启动后生成的网络覆盖了docker的网络,当你重启docker后, ...

  9. Java进阶篇(六)——Swing程序设计(下)

    三.布局管理器 Swing中,每个组件在容器中都有一个具体的位置和大小,在容器中摆放各自组件时很难判断其具体位置和大小,这里我们就要引入布局管理器了,它提供了基本的布局功能,可以有效的处理整个窗体的布 ...

  10. 本地计算机上的OracleOraDb10g_home1TNSListener服务启动后又停止了..........解决办法

    方法1.直接修改 listener.ora 我机器上的路径是: D:/Oracle/product/10.2.0/db_1/NETWORK/ADMIN/listener.ora 修改其中的 HOST ...