51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]
1584 加权约数和
题意:求\(\sum_{i=1}^{N} \sum_{j=1}^{N} {\max(i,j)\cdot \sigma(i\cdot j)}\)
多组数据\(n \le 10^6, T \le 50000\)
这道题有两步我感到非常神奇。tls好强啊。
首先,怎么处理\(max(i,j)\)
\]
这样转化之后再代入,可以得到
\]
之前的题目已经推倒过\(f(n)\)
令g(n)= \mu(d)\cdot d,\ h(n) = (\sum_{i=1}^{n} \sigma_1(i))^2 \\
f(n) = \sum_{i=1}^n g(i) h(\frac{n}{i})
\]
因为还需要f的前缀和,整除分块计算的话复杂度\(O(n\sqrt{n})\)承受不了...
第二步很神的做法
对于一个\(i\),\(\frac{x}{i}\)的取值对于一段\(x\)也是相同的!就是每段\([k*i,k*i+i-1]\)
我们枚举\(i\),然后枚举取值相同的\(x\)的段,给这些\(f(x)\)加上\(g(i) h(\frac{x}{i})\)
对f进行差分可以做到\(O(1)\)区间加,那么根据调和级数求和复杂度\(O(nlogn)\)
对于单个函数需要整除分块的计算的,求他们的前缀和,都可以使用这个技巧优化到\(O(nlogn)\)
我的常数有点大,改了几个long long就好了,看来类型转化很慢啊
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <cmath>
//using namespace std;
typedef long long ll;
const int N=1e6+5, mo=1e9+7;
int U=1e6;
inline int read(){
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
inline void mod(int &x) {if(x>=mo) x-=mo; else if(x<0) x+=mo;}
inline void mod(ll &x) {if(x>=mo) x-=mo; else if(x<0) x+=mo;}
bool notp[N]; int p[N/10], lp[N], mu[N]; ll si[N], g[N], h[N];
void sieve(int n) {
mu[1] = 1; si[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1, lp[i] = i, si[i] = 1+i;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
int t = i*p[j]; notp[t] = 1;
if(i % p[j] == 0) {
mu[t] = 0;
lp[t] = lp[i] * p[j];
if(t == lp[t]) mod(si[t] = si[i] + lp[t]);
else si[t] = si[t / lp[t]] * si[lp[t]] %mo;
break;
}
lp[t] = p[j];
mu[t] = -mu[i];
si[t] = si[i] * (p[j] + 1) %mo;
}
}
for(int i=1; i<=n; i++) mod(g[i] = mu[i] * i), mod(si[i] += si[i-1]), h[i] = si[i] * si[i] %mo;
}
int f[N], s[N];
void init(int n) {
for(int i=1; i<=n; i++) {
for(int x=i, k=1; x<=n; x+=i, k++) {
int l = x, r = x+i-1, d = g[i] * h[k] %mo;
if(r > n) r = n;
mod(f[l] += d); mod(f[r+1] -= d);
}
}
for(int i=1; i<=n; i++) mod(f[i] += f[i-1]), mod(s[i] = s[i-1] + f[i]);
}
int n;
int main() {
freopen("in", "r", stdin);
sieve(U);
init(U);
int T=read();
for(int i=1; i<=T; i++) {
n=read();
int ans = (ll) f[n] * n %mo - s[n-1]; mod(ans);
printf("Case #%d: %d\n", i, ans);
}
}
51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]的更多相关文章
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- [51Nod 1584] 加权约数和
Description 在整理以前的试题时,他发现了这样一道题目:"求 \(\sum\sigma(i)\),其中 \(1≤i≤N\),\(σ(i)\) 表示 \(i\) 的约数之和.&quo ...
- 51nod 1584加权约数和
学到了好多东西啊这题... https://blog.csdn.net/sdfzyhx/article/details/72968468 #include<bits/stdc++.h> u ...
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- 51nod 1222 最小公倍数计数【莫比乌斯反演】
参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum ...
- 51nod 1594 Gcd and Phi(莫比乌斯反演)
题目链接 传送门 思路 如果这题是这样的: \[ F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\phi(gcd(i,j)) \] 那么我们可能会想到下 ...
- [51 Nod 1584] 加权约数和
题意 求∑i=1N∑j=1Nmax(i,j)⋅σ1(ij)\large \sum_{i=1}^N\sum_{j=1}^Nmax(i,j)\cdot\sigma_1(ij)i=1∑Nj=1∑Nmax ...
- YbtOJ#943-平方约数【莫比乌斯反演,平衡规划】
正题 题目链接:http://www.ybtoj.com.cn/contest/122/problem/3 题目大意 \(S(i)\)表示\(i\)的约数个数,\(Q\)次询问给出\(n,m\)求 \ ...
随机推荐
- oracle创建函数和调用存储过程和调用函数的例子(区别)
创建函数: 格式:create or replace function func(参数 参数类型) Return number Is Begin --------业务逻辑--------- End; ...
- jquery的done和then区别
jquery的deferred对象的done方法和then方法都能实现链式调用,但是他们的作用是有区别的,then方法中如果你传递的方法有返回值,那么他会传递给下一个链式调用的方法.而done方法与此 ...
- 小白的Python之路 day5 模块XML特点和用法
模块XML的特点和用法 一.简介 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今 ...
- 数据结构课程设计四则运算表达式求值(C语言版)
本系统为四则运算表达式求值系统,用于带小括号的一定范围内正负数的四则运算标准(中缀)表达式的求值.注意事项: 1.请保证输入的四则表达式的合法性.输入的中缀表达式中只能含有英文符号"+ ...
- javascript数据类型及转换
此篇数据类型和转换只限于ECMA规范,规范用了比较大的篇幅讲数据类型和类型转换,理解了这个最基本的概念对表达式.语句.执行环境.对象及继承都有非常大的帮助,遂整理如下: 数据类型和值 类型转换 表达式 ...
- phpfpm配置 php中的坑
###### 记一些坑```//phpfpm配置pm.max_children = 最大并发数详细的答案:pm.max_children 表示 php-fpm 能启动的子进程的最大数量.因为 php- ...
- 读书笔记——《C++ Concurrency IN ACTION》
=================================版权声明================================= 版权声明:原创文章 禁止转载 请通过右侧公告中的“联系邮 ...
- Android-第二天(2)
程序3 SimpleAdapter是扩展性最好的适配器,可以定义各种你想要的布局,而且使用很方便 SimpleAdapter(Context context, List<? extends Ma ...
- ZooKeeper集群的安装、配置、高可用测试
Dubbo注册中心集群Zookeeper-3.4.6 Dubbo建议使用Zookeeper作为服务的注册中心. Zookeeper集群中只要有过半的节点是正常的情况下,那么整个集群对外就是可用的.正是 ...
- 监控服务器ssh登录,并发送报警邮件
最近想监控下云主机的ssh登录情况,所以开始写ssh登录报警监控.实现方式并不难. 一:邮箱申请开启SMTP 在邮箱中选择“设置”----->“账户” 在如下图处开启POP3/SMTP服务,并生 ...