Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题)
- 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件;判断肿瘤是恶性还是良性等。机器学习中逻辑回归便是解决分类问题的一种方法。
二分类:通常表示为yϵ{0,1},0:“Negative Class”,1:“Possitive Class”。 - 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1):
其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下:
理解预测函数hθ(x)的意义:其实函数hθ(x)的值是系统认为样本值Y为1的概率大小,可表示为hθ(x)=P(y=1|x;θ)=1-P(y=0|x;θ).
- 决策边界(Decision boundary):y=0和y=1的分界线,由逻辑函数图形可知,当y=1时,g(z)>=0.5,z>=0,也就是说θTX>=0,这样我们就可以通过以xi为坐标轴,作出θTX=0这条直线,这条直线便是决策边界。如下图所示:
代价函数(Cost Function)J(θ):一定要是一个凸函数(Convex Function),这样经过梯度下降方便找到全局最优 。
根据以上两幅图我们可以看出,当预测值hθ(x)和实际值结果y相同时,代价值为0;当预测值hθ(x)和实际结果y不同时,代价值无穷大。组合在一起可以写为:
向量化后可写为:- 梯度下降算法:和线性回归中使用的一样
向量化: - 高级优化方法(用来代替梯度下降选择参数θ):Conjugate gradient(共轭梯度法)、BFGS、L-BFGS,只需要掌握用法即可,不需了解原理。
优点:不需要手动选择学习速率α,收敛速度比梯度下降快,更复杂。%首先写一个函数用来计算代价函数和代价函数的梯度
function [jVal, gradient] = costFunction(theta)
jVal = [...code to compute J(theta)...];
gradient = [...code to compute derivative of J(theta)...];
end %然后在命令行中通过调用fminunc()函数来计算参数θoptions = optimset('GradObj', 'on', 'MaxIter', 100);
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options); - 多分类问题:可以转化为n+1个二分类问题看待,如下:
通过这种形式,我们可以预测出结果最接近哪个y值。
二.过拟合问题和解决方法
Underfit:欠拟合问题具有高偏差;Overfit:过拟合问题具有高方差。
过拟合的定义:如果训练集中有过多的特征项,训练函数过于复杂,而训练数据又非常少。我们学到的算法可能会完美的适应训练集,也就是说代价会接近与0。但是却没有对新样本的泛化能力。
解决方法:手动的选择合适的特征;或者使用模型选择算法(用来选取特征变量)。
- 正规化(Regularization):正则化中我们将保留所有的特征变量,但是会减小特征变量的数量级(参数数值的大小θ(j)),相当于减少参数θ(j)所对应的多项式对整个预测函数的影响。以下内容以线性回归为例。
正规化代价函数:其中λ过大会导致欠拟合。正规化梯度下降:θ0不需要
其中当参数Θ不为θ0时,梯度下降形式又可以改写为:
正规化正规方程:其中L为(n+1)*(n+1)维矩阵。
正规化逻辑回归:
代价函数:
梯度下降形式和线性回归相同。
- 正规化逻辑回归中高级的求解参数θ方法:
无~~~~
Coursera-AndrewNg(吴恩达)机器学习笔记——第三周的更多相关文章
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); % ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业(逻辑回归)
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); % ...
- 吴恩达机器学习笔记(三) —— Regularization正则化
主要内容: 一.欠拟合和过拟合(over-fitting) 二.解决过拟合的两种方法 三.正则化线性回归 四.正则化logistic回归 五.正则化的原理 一.欠拟合和过拟合(over-fitting ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记(完结)
Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
随机推荐
- Weblogic10 集群配置
1.预备知识 什么是Domain和Server Domain Domain是WebLogic Server实例的基本管理单元.所谓Domain就是,由配置为Administrator Serve ...
- linux 编译c程序与动态链接库
linux 下编译c程序与动态链接库 1 动态库h文件和c文件 1.1 h 文件: kaflog4c.h /** * kaflog4c.h */ #include <stdio.h> #i ...
- ZooKeeper实现分布式锁
使用场景 一般的锁是指单进程多线程的锁,在多线程并发编程中,用于线程之间的数据同步,保证共享资源的访问.而分布式锁,指的是在分布式环境下,保证跨进程.跨主机.跨网络的共享资源,实现互 ...
- 《java入门第一季》之Calendar类小案例获取任意二月天数
import java.util.Calendar; import java.util.Scanner; /* * 获取任意一年的二月有多少天 * * 分析: * A:键盘录入任意的年份 * B:设置 ...
- Gradle 1.12用户指南翻译——第二十一章. Gradle 插件
昨天晚上只顾着和女朋友看<匆匆那年>电视剧的最后几集,所以说好的Android文档<Gradle 插件用户指南>第五章自然也没翻译多少.所以今天也发不了第五章的翻译了,就发几个 ...
- LIRe 源代码分析 6:检索(ImageSearcher)[以颜色布局为例]
===================================================== LIRe源代码分析系列文章列表: LIRe 源代码分析 1:整体结构 LIRe 源代码分析 ...
- Otto事件总线框架的使用
Otto是一个在Android中的事件总线框架,它是square的一个开源框架,具体介绍点击这里,项目下载点击这里 为什么要使用Otto事件总线: 通常来说在Android中: 1.Activity与 ...
- C语言实现快速翻转数组的顺序
#include <stdio.h> void Reverse(int *p , int size) { int i , tmp; for(i = 0 ; i < size/2 ; ...
- Android进阶(十七)AndroidAPP开发问题汇总(一)
首先来看一下猎头公司对于Android方向人才招聘的需求: 猎头公司推荐------资深Java软件工程师(Android方向) 岗位职责: 1.熟悉Java语言,熟悉B/S开发的基本结构 2.能运用 ...
- BP 神经网络
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP ...