tf.nn.conv2d

在使用TF搭建CNN的过程中,卷积的操作如下

convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME")

这个函数中各个参数的含义是什么呢?

  • X:输入数据的mini-batch,为一个4D tensor;分别表示的含义为[n_batch,height,width,channel]
  • filters:为卷积核,为一个4D tensor,分别表示的含义为 [filter_height, filter_width, in_channels, out_channels]
  • stride:为步长,使用方法为[1,stride,stride,1]

    该方法先将filter展开为一个2D的矩阵,形状为[filter_heightfilter_width in_channels, out_channels],再在图片上面选择一块大小进行卷积计算的到一个大小为[batch, out_height, out_width, filter_height * filter_width * in_channels]的虚拟张量。

    再将上面两部相乘(右乘filter矩阵)
  • padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式。下面使用图表示两种的计算形式

当使用VALID的时候,如果卷积计算过程中,剩下的不够一步,则剩下的像素会被抛弃,SAME则会补0.

filter_primes = np.array([2., 3., 5., 7., 11., 13.], dtype=np.float32)
x = tf.constant(np.arange(1, 13+1, dtype=np.float32).reshape([1, 1, 13, 1]))
filters = tf.constant(filter_primes.reshape(1, 6, 1, 1)) valid_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='VALID')
same_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='SAME') with tf.Session() as sess:
print("VALID:\n", valid_conv.eval())
print("SAME:\n", same_conv.eval())

输出内容为

VALID:
[[[[ 184.]
[ 389.]]]]
SAME:
[[[[ 143.]
[ 348.]
[ 204.]]]]

实际计算向量如下所示:

print("VALID:")
print(np.array([1,2,3,4,5,6]).T.dot(filter_primes))
print(np.array([6,7,8,9,10,11]).T.dot(filter_primes))
print("SAME:")
print(np.array([0,1,2,3,4,5]).T.dot(filter_primes))
print(np.array([5,6,7,8,9,10]).T.dot(filter_primes))
print(np.array([10,11,12,13,0,0]).T.dot(filter_primes))
>> VALID:
184.0
389.0
SAME:
143.0
348.0
204.0

再来做一个小实验,使用VALID的时候:

input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='VALID')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(op)
# print(sess.run(op))
>>Tensor("Conv2D:0", shape=(1, 2, 2, 1), dtype=float32)

使用SAME的时候

input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(op)
# print(sess.run(op))
>>Tensor("Conv2D:0", shape=(1, 3, 3, 1), dtype=float32)

note:在做卷积的过程中filter的shape为[hight,width,channel],也就是说如果为如果输入只有一个channel的时候,filter为一个矩阵,如果channel为3的时候,这个时候的filter就有了厚度为3。

tf.layer.conv2d

同时TF也提供了tf.layer.conv2d的方法

def conv2d(inputs,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=init_ops.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
trainable=True,
name=None,
reuse=None):

这个方法和tf.nn.conv2d有着相同的作用,相当于对其的更高层的api。两个方法的调用过程如下:

tf.layers.conv2d-> tf.nn.convolution .
tf.layers.conv2d->Conv2D->Conv2D.apply()->_Conv->_Conv.apply()->_Layer.apply()->_Layer.\__call__()->_Conv.call()->nn.convolution()...

我用这两个方法搭建了相同的神经网络,可是得到的准确率相差很大,其他部分代码一张样。代码和准确率如下。为何差别这么的大?

    def conv2d(self,input,ksize,stride,name):
with tf.name_scope(name):
with tf.variable_scope(name):
w = tf.get_variable("%s-w" %name,shape= ksize,initializer=tf.truncated_normal_initializer())
b = tf.get_variable("%s-b" %name,shape = [ksize[-1]],initializer = tf.constant_initializer())
out = tf.nn.conv2d(input,w,strides=[1,stride,stride,1],padding="SAME",name="%s-conv"%name)
out = tf.nn.bias_add(out,b,name='%s-bias_add' %name)
out = tf.nn.relu(out,name="%s-relu"%name)
return out

conv1 = tf.layers.conv2d(X,filters=conv1_fmaps, \
kernel_size = conv1_ksize,strides=conv1_stride,\
padding=conv1_pad,activation=tf.nn.relu,name='conv1')

为何差异这么大呢?我现在还没弄查出结果,如果知道答案请指出,先谢过。

tf.layers.conv2d中默认的kernel_initializer

tf.layer.conv2d这里面默认的kernel_initializer为None,经查阅源码

    self.kernel = vs.get_variable('kernel',
shape=kernel_shape,
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
trainable=True,
dtype=self.dtype)

这里面有一段说明

   If initializer is `None` (the default), the default initializer passed in
the constructor is used. If that one is `None` too, we use a new
`glorot_uniform_initializer`. If initializer is a Tensor, we use
it as a value and derive the shape from the initializer.

也就是说使用的是

glorot_uniform_initializer来进行初始化的。这种方法又被称为Xavier uniform initializer,相关的文献在这里 。另外TF中tf.layers.dense也是使用的这个初始化方法。我把初始化方法都改成了使用tf.truncated_normal_initializer,上面模型的结果没有什么改善。看来初始化方法不是主要原因。求解。

TF中conv2d和kernel_initializer方法的更多相关文章

  1. TensorFlow走过的坑之---数据读取和tf中batch的使用方法

    首先介绍数据读取问题,现在TensorFlow官方推荐的数据读取方法是使用tf.data.Dataset,具体的细节不在这里赘述,看官方文档更清楚,这里主要记录一下官方文档没有提到的坑,以示" ...

  2. TensorFlow使用记录 (二): 理解tf.nn.conv2d方法

    方法定义 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC&quo ...

  3. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  4. 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )

    最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博 ...

  5. tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码

    这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...

  6. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  7. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  8. tf.nn.conv2d 参数介绍

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  9. tf.nn.conv2d()需要搞清楚的几个变量。

    惯例先展示函数: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指 ...

随机推荐

  1. 初学Python3 - 写一个登录程序

    本篇主要实现一个简单的登录程序,默认给出一个账号密码,贴出写的代码及过程中遇到的问题. ----------------------------------------要求如下: username p ...

  2. 数据操纵:SELECT, INSERT, UPDATE, DELETE

    SELECT 句法 SELECT [STRAIGHT_JOIN] [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT] [SQL_CACHE ...

  3. puppet客户端拉取服务端的资源时报错

    2017-11-01   16:21:47 客户端再拉取服务端的配置的资源时,出现一下报错: 造成原因:服务配置的资源不可用: 解决办法:将服务端不正确的资源配置删除: master:   cd   ...

  4. 并查集(Java实现)

    (最好在电脑下浏览本篇博客...手机上看代码不方便) 当时学的时候看的一本印度的数据结构书(好像是..有点忘了..反正跟同学们看的都不一样...)...里面把本文提到的所有情况都提到了,我这里只是重复 ...

  5. 使用nodegrass简单封装http请求例子

    1.项目中经常性的使用http发送请求处理数据.而大部分请求方式为get和post,于是对http请求进行封装,提供代码的利用率. 2.nodegress是nodejs的一个请求工具. 具体步骤及代码 ...

  6. 简单模拟struts2及struts2的处理流程介绍

    用了几天模拟struts2,最后结果还是很成功的,也基本没有什么遇上比较难解决的问题,万事开头难,在最开始的时候无从下手,看着下面这张struts2工作流程图配合着网上的博客看了一天终于有了眉目. 看 ...

  7. laravel 原生 sql

    1.插入数据 DB::insert('insert into users (id, name, email, password) values (?, ?, ? , ? )',[1, 'Laravel ...

  8. spring Boot+spring Cloud实现微服务详细教程第二篇

    上一篇文章已经说明了一下,关于spring boot创建maven项目的简单步骤,相信很多熟悉Maven+Eclipse作为开发常用工具的朋友们都一目了然,这篇文章主要讲解一下,构建spring bo ...

  9. javaMail邮件发送功能(多收件人,多抄送人,多密送人,多附件)

    private Session session; private Transport transport; private String mailHost = ""; privat ...

  10. 【Python】 上下文管理器和contextlib

    上下文管理器 一直对python中的上下文管理比较迷惑,趁着今天研究SQLAlchemy顺便看了一下,感觉稍微清楚了一点.http://www.cnblogs.com/chenny7/p/421344 ...