hbase读数据用scan,读数据加速的配置参数为:

Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
其中,

public Scan setCacheBlocks(boolean cacheBlocks)//Set whether blocks should be cached for this Scan

    默认值为true, 分内存,缓存和磁盘,三种方式,一般数据的读取为内存->缓存->磁盘;setCacheBlocks不适合MapReduce工作:
MR程序为非热点数据,不需要缓存,因为Blockcache is LRU,也就是最近最少访问算法(扔掉最少访问的),那么,前一个请求(比如map读取)读入Blockcache的
所有记录在后一个请求(新的map读取)中都没有用,就必须全部被swap,那么RegionServer要不断的进行无意义的swapping data,也就是无意义的输入和输出BlockCache,增加了无必要的IO。而普通读取时局部查找,或者查找最热数据时,会有提升性能的帮助。

public Scan setCaching(int caching)

//增加缓存读取条数(一次RPC调用返回多行记录),加快scaners读取速度,但耗费内存增加,设太大会响应慢、超时、或者OOM,
找到RPC操作的数据和内存占用情况的一个折中,默认使用Configuration setting HConstants.HBASE_CLIENT_SCANNER_CACHING,值为1
public void setBatch(int batch) //设置获取记录的列个数,默认无限制,也就是返回所有的列。实际上就是控制一次next()传输多少个columns,如setBatch(5)则每个Result实例返回5个columns,(http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html)
setBatch使用场景为,用客户端的scanner缓存进行批量交互从而提高性能时,非常大的行可能无法放入客户端的内存,这时需要用HBase客户端API中进行batching处理。

通过调整setCaching和setBatch这两个参数,可以观察对RPC交互数量的影响,也就是时间性能的影响:

一个简单的例子,一个表含两个column family,每个column family下10个column,10行数据,比较效果的组合
Caching: 1, Batch: 1, Results: 200, RPCs: 201
Caching: 200, Batch: 1, Results: 200, RPCs: 2
Caching: 5, Batch:100, Results: 10, RPCs: 3
Caching: 5, Batch:20, Results: 10, RPCs: 3
Caching: 10, Batch:10, Results: 20, RPCs: 3
计算RPC的次数:将行数result与column数相乘,再除以batch和column数中的较小值,最后除以caching大小。

===================================================

其他的参数优化配置:

参考http://joshuasabrina.iteye.com/blog/1798239

1. Write Buffer Size

HTable htable = new HTable(config, tablename);
htable.setWriteBufferSize(10 * 1024 * 1024);
htable.setAutoFlush(false);

2.map中间结果压缩

参考(
http://blog.csdn.net/yangbutao/article/details/8474731
http://m.blog.csdn.net/blog/u012875880/21874293
http://developer.51cto.com/art/201204/331337.htm
) 老版本中用
conf.setCompressMapOutput(true);
conf.setMapOutputCompressorClass(GzipCodec.class); 新的设置方法为
conf.setBoolean("mapred.compress.map.output", true);
//conf.setClass("mapred.map.output.compression.codec",GzipCodec.class, CompressionCodec.class); 默认使用GzipCodec,可以指定GzipCodec.class,SnappyCodec.class,LzopCodec.class,
其中lzo、snappy需要操作系统安装native库才可以支持。
数据格式为TextFile,Sequence,以及其他用户自定义的文件格式的文件都可以压缩,不同的场合用不同的压缩算法,bzip2和GZIP是比较消耗CPU的,压缩比最高。但GZIP不能被分块并行处理;
Snappy和LZO差不多,稍微胜出一点,cpu消耗的比GZIP少。 comparison between compression algorithms
Algorithm % remaining Encoding Decoding
GZIP 13.4% 21 MB/s 118 MB/s
LZO 20.5% 135 MB/s 410 MB/s
Snappy 22.2% 172 MB/s 409 MB/s

运行时报错处理

1,客户端收到报错
ScannerTimeoutException:org.apache.hadoop.hbase.client.ScannerTimeoutException
这是当从服务器传输数据到客户端的时间,或者客户端处理数据的时间大于了scanner设置的超时时间,scanner超时报错,可在客户端代码中设置超时时间
Configuration conf = HBaseConfiguration.create()
conf.setLong(HConstants.HBASE_REGIONSERVER_LEASE_PERIOD_KEY,120000)
但由于scan超时时间是配在Region Server上的,所以此配置无用。修改该值必须在Region Server上修改hbase-site.xml,重启集群。
2,报错org.apache.hadoop.hbase.regionserver.LeaseException: org.apache.hadoop.hbase.regionserver.LeaseException: lease ” does not exist
    首先介绍,租约(Lease)过期或租约不存在,指的是hbase client端每次和regionserver交互时,服务器端会生成一个租约(Lease),其有效期时间由参数hbase.regionserver.lease.period确定。
原理如下:
客户端在regionserver取数据时,如果hbase中存的数据过大且很多region时,客户端请求的region不在内存中,或是没有被cache住,需要从磁盘中加载。而当加载时间超过了hbase.regionserver.lease.period的设置时间,且客户端没有和regionserver报告其还活着,那么regionserver就会认为本次租约已经过期,并从LeaseQueue中删掉本次租约,当regionserver加载完成后,拿已经被删除的租约再去取数据的时候,就会出现如上的错误现象。
解决办法一般是增加租约时间,设置hbase.regionserver.lease.period参数(默认为60000,一分钟)
conf.setLong(HConstants.HBASE_REGIONSERVER_LEASE_PERIOD_KEY,120000)。
如果还报错,则可能是hbase.rpc.timeout的问题,增大hbase.regionserver.lease.period的时候应该同时增大hbase.rpc.timeout,同时hbase.rpc.timeout应该等于或大于hbase.regionserver.lease.period
conf.setLong("hbase.rpc.timeout", 1200000);

hbase 程序优化 参数调整方法的更多相关文章

  1. Odoo环境下Ubuntu服务器性能优化--参数调整

    公司在使用Odoo进行内部信息化管理,随着业务增长,服务器性能问题变成了瓶颈,为了解决这些问题,最近的工作重点将移到性能调整上来,同时也会在此记录整个处理过程,以便日后回顾. 1.根据相关资料建议,在 ...

  2. 我的四轴专用PID参数整定方法及原理---超长文慎入(转)

    给四轴调了好久的PID,总算是调好了,现分享PID参数整定的心得给大家,还请大家喷的时候手下留情. 首先说明一下,这篇文章的主旨并不是直接教你怎么调,而是告诉你这么调有什么道理,还要告诉大家为什么'只 ...

  3. HBase性能优化方法总结(转)

    本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pr ...

  4. HBase性能优化方法总结(转)

    原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. ...

  5. HBase性能优化方法总结(三):读表操作

    本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第三部分内容:读表操作相关的优化方法 ...

  6. [转帖]PostgreSQL 参数调整(性能优化)

    PostgreSQL 参数调整(性能优化) https://www.cnblogs.com/VicLiu/p/11854730.html 知道一个 shared_pool 文章写的挺好的 还没仔细看 ...

  7. HBase性能优化方法总结(三):读表操作(转)

    转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section3.html 本文主要是 ...

  8. HBase性能优化方法总结(二):写表操作

    转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section2.html 本文主要是 ...

  9. HBase性能优化方法总结

    1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数 ...

随机推荐

  1. ●洛谷P3688 [ZJOI2017]树状数组

    题链: https://www.luogu.org/problemnew/show/P3688题解: 二维线段树. 先不看询问时l=1的特殊情况. 对于一个询问(l,r),如果要让错误的程序得到正确答 ...

  2. Educational Codeforces Round 18

    A. New Bus Route 题目大意:给出n个不同的数,问差值最小的数有几对.(n<=200,000) 思路:排序一下,差值最小的一定是相邻的,直接统计即可. #include<cs ...

  3. 2015 多校联赛 ——HDU5410(dp)

    Sample Input 1 100 2 10 2 1 20 1 1   Sample Output 21 题意:共有m元钱和n种东西,求每种单价p,而且你买x个该种物品可以得到Ax+B个,求m元钱最 ...

  4. 【bzoj4569 scoi2016】萌萌哒

    题目描述 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串S ...

  5. NOI2017游记

    Day -1: THUSC后,下定决心好好学习,不过由于自制力太弱,还是没有忍住浪了几次. 老师把NOI前的天分为了4种:考试日.交流日.讲课日.自习日. 考试日是我被郭神短神妖神任神常神尹神龙神游神 ...

  6. 在QEMU中调试ARM程序【转】

    转自:http://linuxeden.com/html/develop/20100820/104409.html 最近我想调试一个运行在QEMU模拟ARM系统中的Linux程序.我碰到过一些麻烦,因 ...

  7. widows下的进程与服务

    进程: 当程序卡死的时候,我们可以直接通过任务管理器来关闭进程. 服务: 在这个界面,我们可以选择启动或者关闭相关服务,还可以选择服务是否自动启动. 以关闭MySQL自启动服务为例:https://j ...

  8. Servlet init()

    有时候希望在servlet首次载入时,执行复杂的初始化任务,但并不想每个请求都重复这些任务的时候,用init()方法他在servlet初次创建时被调用,之后处理每个用户的请求时,则不在调用这个方法.因 ...

  9. Enum枚举

    Java Enum原理 public enum Size{ SMALL, MEDIUM, LARGE, EXTRA_LARGE }; 实际上,这个声明定义的类型是一个类,它刚好有四个实例,在此尽量不要 ...

  10. angular学习笔记 父子组件传值

    一.如何将父组件的值传到子组件? 在子组件里面引入Input,然后用@Input 变量1 接收 接着在父组件中的,子组件标签上添加[msg]="msg",中括号里的名字要与子组件中 ...