4665: 小w的喜糖

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 120  Solved: 72
[Submit][Status][Discuss]

Description

废话不多说,反正小w要发喜糖啦!!

小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类。这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每个人手中的糖的种类都与原来不同。

两个方案不同当且仅当,存在一个人,他手中的糖的种类在两个方案中不一样。

Input

第一行,一个整数n

接下来n行,每行一个整数,第i个整数Ai表示开始时第i个人手中的糖的种类

对于所有数据,1≤Ai≤k,k<=N,N<=2000

Output

一行,一个整数Ans,表示方案数模1000000009

Sample Input

6
1
1
2
2
3
3

Sample Output

10

f[i][j]表示前i种糖,j个人拿到的糖相同,剩下的糖果先不发给人
转移式还是挺好推的
把每种糖看成不同,b[i]表示第i种糖的个数
每新增加一种糖,枚举现在几个人拿到自己的糖 一个人拿到自己的糖要在所有同种糖中选择
转移完之后,所有f[i][j]*=fac[n-j]表示剩下的糖随意分给其他人,不保证不分到自己的糖
所以f[i][j]就变成了至少j个人拿到相同的糖,容斥一下
最后,因为把每种糖的个体视为不同,需要 /fac[b[i]]
推荐blog
http://www.cnblogs.com/zj75211/p/8035076.html

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 2005
#define mod 1000000009
using namespace std;
int n,m,f[N][N],a[N],b[N],fac[N],inv[N],c[N][N],sum[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
if(a[i]!=a[i-1])m++;
b[m]++;
}
for(int i=1;i<=m;i++)
sum[i]=sum[i-1]+b[i];
for(int i=0;i<=2000;i++)
c[i][i]=c[i][0]=1;
for(int i=1;i<=2000;i++)
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(int i=2;i<=2000;i++){
fac[i]=1ll*fac[i-1]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
}
for(int i=2;i<=2000;i++)inv[i]=1ll*inv[i]*inv[i-1]%mod;
f[0][0]=1;
for(int i=1;i<=m;i++)
for(int j=0;j<=sum[i-1];j++)
for(int k=0;k<=b[i];k++)
f[i][j+k]=(f[i][j+k]+1ll*f[i-1][j]*c[b[i]][k]%mod*fac[b[i]]%mod*inv[b[i]-k]%mod)%mod;
ll ans=0;
for(int i=n;i>=0;i--)
ans=(ans+1ll*((n-i)&1?-1:1)*f[m][i]*fac[n-i])%mod;
for(int i=1;i<=m;i++)ans=ans*inv[b[i]]%mod;
ans<0?ans+=mod:1;
cout<<ans;
return 0;
}

bzoj4665小w的喜糖 dp+容斥的更多相关文章

  1. BZOJ4665: 小w的喜糖 DP

    对于这道题,首先每个人的位置并不影响结果 所以我们可以将相同颜色糖果的人放在一块处理 设 $f_{i,j}$ 表示处理到第 $i$ 种糖果至少有 $j$ 人的糖果和原先的类型相同 枚举当前种类中不满足 ...

  2. bzoj4665 小w的喜糖(dp+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 130[Submit][Status][Discuss ...

  3. [bzoj4665]小w的喜糖_二项式反演

    小w的喜糖 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4665 数据范围:略. 题解: 二项式反演裸题. $f_{i,j}$表示,前$i$种钦 ...

  4. BZOJ4665 : 小w的喜糖

    考虑枚举哪些人一定不合法,那么方案数可以通过简单的排列组合算出. 于是设$f[i][j]$表示前$i$种糖果,一共有$j$个人一定不合法的方案数,但是这样并不能保证其他人一定合法,所以需要进行容斥. ...

  5. 【BZOJ4665】小w的喜糖 容斥+组合数

    [BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...

  6. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  7. BZOJ 4665: 小w的喜糖

    Sol DP+容斥. 这就是一个错排的扩展...可是想到容斥却仅限于种数的容斥,如果种数在一定范围内我就会做了QAQ. 但是容斥的是一定在原来位置的个数. 发现他与原来的位置无关,可以先把每个同种的糖 ...

  8. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  9. 小w的喜糖(candy)

    小w的喜糖(candy) 题目描述 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每 ...

随机推荐

  1. 亚马逊的PuTTY连接AWS出现network error connection refused,终极解决方案。

    使用PuTTY连接AWS的时候,一直出现network error connection refused.百度了这个问题,大家都说是SSH要设置成22.但是我已经设置过了,为什么还是遇到这个问题呢? ...

  2. Vim 游戏 2048

    给大家介绍一款可以在Vim里面玩的游戏 vim2048. 界面如图: 操作非常简单,可以用 hjkl 或者 上下左右方向键移动 项目开源地址为: https://github.com/wsdjeg/v ...

  3. animation & @keyframes 实现loading效果

    效果图截图如下: 直接上代码: html <!DOCTYPE html> <html> <head> <meta charset="utf-8&qu ...

  4. session 与 cookie (一)

    服务器信息临时存储 session篇 web.xml设置 <session-config> <session-timeout></session-timeout> ...

  5. LeetCode & Q283-Move Zeroes-Easy

    Array Two Pointers Description: Given an array nums, write a function to move all 0's to the end of ...

  6. Python内置函数(57)——print

    英文文档: print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False) Print objects to the text str ...

  7. Linux CentOS7.0 (04)systemctl vs chkconfig、service

    CentOS 7.0中已经没有service命令,而是启用了systemctl服务器命令 systemctl 是系统服务管理器命令,它实际上将 service 和 chkconfig 这两个命令组合到 ...

  8. io使用的设计模式

    File f = new File("c:/a.txt"); 1. FileInputStream fis = new FileInputStream(f); 2. Reader ...

  9. linux系统命令学习系列-定时任务crontab命令

    上节内容复习: at命令的使用 作业:创建一个任务10分钟后关机 at now+10 minutes at>shutdown at><EOT> 本节我们继续来说例行任务管理命令 ...

  10. java集合详解

    1.java集合框架的层次结构 Collection接口: Set接口: HashSet具体类 LinkedHashSet具体类 TreeSet具体类 List接口:   ArrayList具体类 L ...