4665: 小w的喜糖

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 120  Solved: 72
[Submit][Status][Discuss]

Description

废话不多说,反正小w要发喜糖啦!!

小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类。这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每个人手中的糖的种类都与原来不同。

两个方案不同当且仅当,存在一个人,他手中的糖的种类在两个方案中不一样。

Input

第一行,一个整数n

接下来n行,每行一个整数,第i个整数Ai表示开始时第i个人手中的糖的种类

对于所有数据,1≤Ai≤k,k<=N,N<=2000

Output

一行,一个整数Ans,表示方案数模1000000009

Sample Input

6
1
1
2
2
3
3

Sample Output

10

f[i][j]表示前i种糖,j个人拿到的糖相同,剩下的糖果先不发给人
转移式还是挺好推的
把每种糖看成不同,b[i]表示第i种糖的个数
每新增加一种糖,枚举现在几个人拿到自己的糖 一个人拿到自己的糖要在所有同种糖中选择
转移完之后,所有f[i][j]*=fac[n-j]表示剩下的糖随意分给其他人,不保证不分到自己的糖
所以f[i][j]就变成了至少j个人拿到相同的糖,容斥一下
最后,因为把每种糖的个体视为不同,需要 /fac[b[i]]
推荐blog
http://www.cnblogs.com/zj75211/p/8035076.html

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 2005
#define mod 1000000009
using namespace std;
int n,m,f[N][N],a[N],b[N],fac[N],inv[N],c[N][N],sum[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
if(a[i]!=a[i-1])m++;
b[m]++;
}
for(int i=1;i<=m;i++)
sum[i]=sum[i-1]+b[i];
for(int i=0;i<=2000;i++)
c[i][i]=c[i][0]=1;
for(int i=1;i<=2000;i++)
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(int i=2;i<=2000;i++){
fac[i]=1ll*fac[i-1]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
}
for(int i=2;i<=2000;i++)inv[i]=1ll*inv[i]*inv[i-1]%mod;
f[0][0]=1;
for(int i=1;i<=m;i++)
for(int j=0;j<=sum[i-1];j++)
for(int k=0;k<=b[i];k++)
f[i][j+k]=(f[i][j+k]+1ll*f[i-1][j]*c[b[i]][k]%mod*fac[b[i]]%mod*inv[b[i]-k]%mod)%mod;
ll ans=0;
for(int i=n;i>=0;i--)
ans=(ans+1ll*((n-i)&1?-1:1)*f[m][i]*fac[n-i])%mod;
for(int i=1;i<=m;i++)ans=ans*inv[b[i]]%mod;
ans<0?ans+=mod:1;
cout<<ans;
return 0;
}

bzoj4665小w的喜糖 dp+容斥的更多相关文章

  1. BZOJ4665: 小w的喜糖 DP

    对于这道题,首先每个人的位置并不影响结果 所以我们可以将相同颜色糖果的人放在一块处理 设 $f_{i,j}$ 表示处理到第 $i$ 种糖果至少有 $j$ 人的糖果和原先的类型相同 枚举当前种类中不满足 ...

  2. bzoj4665 小w的喜糖(dp+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 130[Submit][Status][Discuss ...

  3. [bzoj4665]小w的喜糖_二项式反演

    小w的喜糖 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4665 数据范围:略. 题解: 二项式反演裸题. $f_{i,j}$表示,前$i$种钦 ...

  4. BZOJ4665 : 小w的喜糖

    考虑枚举哪些人一定不合法,那么方案数可以通过简单的排列组合算出. 于是设$f[i][j]$表示前$i$种糖果,一共有$j$个人一定不合法的方案数,但是这样并不能保证其他人一定合法,所以需要进行容斥. ...

  5. 【BZOJ4665】小w的喜糖 容斥+组合数

    [BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...

  6. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  7. BZOJ 4665: 小w的喜糖

    Sol DP+容斥. 这就是一个错排的扩展...可是想到容斥却仅限于种数的容斥,如果种数在一定范围内我就会做了QAQ. 但是容斥的是一定在原来位置的个数. 发现他与原来的位置无关,可以先把每个同种的糖 ...

  8. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  9. 小w的喜糖(candy)

    小w的喜糖(candy) 题目描述 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每 ...

随机推荐

  1. 推荐net开发cad入门阅读代码片段

    转载自  Cad人生  的博客 链接:http://www.cnblogs.com/cadlife/articles/2668158.html 内容粘贴如下,小伙伴们可以看看哦. using Syst ...

  2. 偶遇vue-awesome-swiper的坑

    最近用vue重构一个移动端的项目,碰到了不少坑,今天拿移动端最著名的轮播插件swiper为例来说,由于这个项目没用UI库,纯手写的样式,沿用老的插件,自然而然的选择了vue-awesome-swipe ...

  3. linux下面的打包压缩命令

    tar命令 tar [-cxtzjvfpPN] 文件与目录 ....linux下面压缩之前要把一堆文件打个包再压缩,即使只有一个文件也需要打个包.例子:tar czvf 1.tar.gz hello. ...

  4. MYSQL中group_concat有长度限制!默认1024

    在mysql中,有个函数叫"group_concat",平常使用可能发现不了问题,在处理大数据的时候,会发现内容被截取了,其实MYSQL内部对这个是有设置的,默认不设置的长度是10 ...

  5. POJ1015 && UVA - 323 ~Jury Compromise(dp路径)

    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...

  6. Python/零起点(一、数字及元组)

    Python/零起点(一.数字及元组) int整型 int()强行转换成整型数据类型 int整型是不可变,且是不可迭代的对象 一.整型数字用二进制位数表示案例: age=7 #设定一个数字赋值给age ...

  7. uvalive 3635 Pie

    https://vjudge.net/problem/UVALive-3635 题意: 有F+1个人要分n个蛋糕,他们得到的蛋糕的面积必须是一样的,但是每个蛋糕必须是整块的蛋糕,而不是有多块蛋糕拼成的 ...

  8. Python:使用youtube-dl+ffmpeg+FQ软件下载youtube视频

    声明:本文所述内容都是从http://blog.csdn.net/u011475134/article/details/71023612博文中学习而来. 背景: 一同学想通过FQ软件下载一些youtu ...

  9. c#:ThreadPool实现并行分析,并实现线程同步结束

    背景: 一般情况下,经常会遇到一个单线程程序时执行对CPU,MEMORY,IO利用率上不来,且速度慢下问题:那么,怎么解决这些问题呢? 据我个人经验来说有以下两种方式: 1.并行.多线程(Parall ...

  10. 谈mysql优化

    公司订单系统每日订单量庞大,有很多表数据超千万.公司SQL优化这块做的很不好,可以说是没有做,所以导致查询很慢. 节选某个功能中的一句SQL EXPLAIN查看执行计划,EXPLAIN + SQL 查 ...