Description

Cyberland 有 n 座城市,编号从 1 到 n,有 m 条双向道路连接这些城市。第 j 条路连接城市 aj 和 bj。每天,都有成千上万的游客来到 Cyberland 游玩。

在每一个城市,都有纪念品售卖,第 i 个城市售价为 wi。这个售价有时会变动。

每一个游客的游览路径都有固定起始城市和终止城市,且不会经过重复的城市。

他们会在路径上的城市中,售价最低的那个城市购买纪念品。

你能求出每一个游客在所有合法的路径中能购买的最低售价是多少吗?

你要处理 q个操作:

C a w: 表示 a 城市的纪念品售价变成 w。

A a b: 表示有一个游客要从 a 城市到 b 城市,你要回答在所有他的旅行路径中最低售价的最低可能值。

Solution

\(tarjan\)求出双连通分量,建立圆方树,然后答案就是圆方树上两点间的经过的点的最小值,树链剖分维护即可

方点本来是所有相邻圆点的权值最小值,此题中带修改,考虑维护一个父子关系,每次修改就只需要改父亲的方点即可

注意树链剖分查询时,如果链顶是方点,还需要查询其父亲的方点的权值,因为这个方点也属于这个双连通分量

方点的权值改用堆维护即可

#include <bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
const int N=2e5+10,inf=1e9+10;
int n,m,Q,a[N],head[N],nxt[N<<2],to[N<<2],num=0,st[N],cnt=0,dep[N],Head[N];
int low[N],dfn[N],DFN=0,W,sz[N],son[N],fa[N],top[N],tr[N<<2],id[N],b[N];
struct H{
priority_queue<int>d,s;
inline void upd(){
while(!s.empty() && !d.empty() && s.top()==d.top())s.pop(),d.pop();
}
inline void push(int x){s.push(-x);}
inline void del(int x){d.push(-x);}
inline int top(){upd();return -s.top();}
}q[N];
inline void link(int x,int y){
nxt[++num]=head[x];to[num]=y;head[x]=num;
nxt[++num]=head[y];to[num]=x;head[y]=num;
}
inline void link2(int x,int y){
nxt[++num]=Head[x];to[num]=y;Head[x]=num;
nxt[++num]=Head[y];to[num]=x;Head[y]=num;
}
inline void tarjan(int x,int last){
low[x]=dfn[x]=++DFN;st[++cnt]=x;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==last)continue;
if(!dfn[u]){
tarjan(u,x);
low[x]=min(low[x],low[u]);
if(low[u]>=dfn[x]){
link2(++n,x);a[n]=inf;
while(st[cnt]!=u)link2(n,st[cnt--]);
link2(n,st[cnt--]);
}
}
else low[x]=min(low[x],dfn[u]);
}
}
inline void dfs1(int x){
sz[x]=1;
for(int i=Head[x];i;i=nxt[i]){
int u=to[i];
if(sz[u])continue;
if(x>W)q[x].push(a[u]);
dep[u]=dep[x]+1;fa[u]=x;dfs1(u);sz[x]+=sz[u];
if(sz[u]>sz[son[x]])son[x]=u;
}
}
inline void dfs2(int x,int tp){
top[x]=tp;id[x]=++DFN;b[DFN]=x;
if(son[x])dfs2(son[x],tp);
for(int i=Head[x];i;i=nxt[i])
if(to[i]!=son[x] && to[i]!=fa[x])dfs2(to[i],to[i]);
}
inline void build(int l,int r,int o){
if(l==r){tr[o]=a[b[l]];return ;}
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
tr[o]=min(tr[ls],tr[rs]);
}
inline void Modify(int l,int r,int o,int sa,int t){
if(l==r){tr[o]=t;return ;}
int mid=(l+r)>>1;
if(sa<=mid)Modify(l,mid,ls,sa,t);
else Modify(mid+1,r,rs,sa,t);
tr[o]=min(tr[ls],tr[rs]);
}
inline void updata(int x,int y){
if(fa[x]){
q[fa[x]].del(a[x]);q[fa[x]].push(y);
Modify(1,n,1,id[fa[x]],a[fa[x]]=q[fa[x]].top());
}
a[x]=y;Modify(1,n,1,id[x],y);
}
inline int qry(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se)return tr[o];
int mid=(l+r)>>1;
if(se<=mid)return qry(l,mid,ls,sa,se);
else if(sa>mid)return qry(mid+1,r,rs,sa,se);
else return min(qry(l,mid,ls,sa,mid),qry(mid+1,r,rs,mid+1,se));
}
inline int query(int x,int y){
int ret=inf;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
ret=min(ret,qry(1,n,1,id[top[x]],id[x]));
x=fa[top[x]];
}
if(id[x]>id[y])swap(x,y);
ret=min(ret,qry(1,n,1,id[x],id[y]));
if(x>W)ret=min(ret,a[fa[x]]);
return ret;
}
int main()
{
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d%d%d",&n,&m,&Q);
int x,y;char S[3];W=n;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
link(x,y);
}
tarjan(1,1);
DFN=0;dfs1(1);dfs2(1,1);
for(int i=W+1;i<=n;i++)a[i]=q[i].top();
build(1,n,1);
while(Q--){
scanf("%s%d%d",S,&x,&y);
if(S[0]=='C')updata(x,y);
else printf("%d\n",query(x,y));
}
return 0;
}

UOJ #30. 【CF Round #278】Tourists的更多相关文章

  1. UOJ #30【CF Round #278】Tourists

    求从$ x$走到$ y$的路径上可能经过的最小点权,带修改  UOJ #30 $ Solution:$ 如果两个点经过了某个连通分量,一定可以走到这个连通分量的最小值 直接构建圆方树,圆点存原点的点权 ...

  2. UOJ30——【CF Round #278】Tourists

    1.感谢taorunz老师 2.题目大意:就是给个带权无向图,然后有两种操作, 1是修改某个点的权值 2是询问,询问一个值,就是u到v之间经过点权的最小值(不可以经过重复的点) 操作数,点数,边数都不 ...

  3. 【题解】【CF Round #278】Tourists

    圆方树第二题…… 图中询问的是指定两点之间简单路径上点的最小权值.若我们建出圆方树,圆点的权值为自身权值,方点的权值为所连接的圆点的权值最小值(即点双连通分量中的最小权值).我们可以发现其实就是这两点 ...

  4. uoj30【CF Round #278】Tourists(圆方树+树链剖分+可删除堆)

    - 学习了一波圆方树 学习了一波点分治 学习了一波可删除堆(巧用 ? STL) 传送门: Icefox_zhx 注意看代码看怎么构建圆方树的. tips:tips:tips:圆方树内存记得开两倍 CO ...

  5. UOJ #30. [CF Round #278] Tourists

    UOJ #30. [CF Round #278] Tourists 题目大意 : 有一张 \(n\) 个点, \(m\) 条边的无向图,每一个点有一个点权 \(a_i\) ,你需要支持两种操作,第一种 ...

  6. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  7. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

  8. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  9. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

随机推荐

  1. beta冲刺6

    前言:此篇是补昨天凌晨的.后面有更新但是太晚了就没有即使更新.所以现在过来更新一下. 昨天的未完成: 用户测试+测试报告 目前剩下的功能点:输入内容检测 我的社团输出显示格式调整. 今天的完成: 我的 ...

  2. Beta第一天

    听说

  3. C语言作业--函数

    一.PTA实验作业 题目1: 400-499 中4出现的次数 1. 本题PTA提交列表 2. 设计思路 一.main函数 1.函数声明int fun(int x) 2.定义变量i,k,i表示输入的值, ...

  4. MySQL-压缩版-windows安装

    1.首先去dev.mysql.com/downloads/mysql/下载MySQL的压缩包,然后解压到任意盘符下. 2.打开系统变量在Path下追加mysql的路径(例如:C:\mysql-5.7. ...

  5. Spring 以及 Spring MVC Bean元素以及@Bean (Bean 等价于 注解 ??? 没理解错误吧)

    ①.由衷鸣谢Bossen <还是没看懂o(╥﹏╥)o><> {声明Spring Bean和注入Bean的几种常用注解和区别} Bean在Spring和SpringMVC中无所不 ...

  6. Sphinx主索引和增量索引来实现索引实时更新的关键步骤

    1.配置csft.conf文件 vim /etc/csft.conf # # Minimal Sphinx configuration sample (clean, simple, functiona ...

  7. pygame事件之——控制物体(飞机)的移动

    近来想用pygame做做游戏,在 xishui 大神的目光博客中学了学这东西,就上一段自己写的飞机大战的代码,主要是对键盘控制飞机的移动做了相关的优化 # -*- coding: utf-8 -*- ...

  8. javascript实现浏览器窗口大小被改变时触发事件的方法

    转载 当浏览器的窗口大小被改变时触发的事件window.onresize 为事件指定代码: 复制代码代码如下: window.onresize = function(){ } 例如: 浏览器可见区域信 ...

  9. restful架构风格设计准则(一)以资源为中心、自描述的请求响应、资源状态迁移为粒度

    读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! 一.需求描述 当用户在某个电子商务网站购物时,他首先查看要购买的商品分类 ...

  10. Mac里安装配置Jdk

    #下载jdk7的mac版 #官网下载地址http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.h ...