Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.



现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。

要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Solution

实现非常巧妙,在线段树合并时可以直接统计

具体思想:

x子树内的逆序对数=左儿子内部的逆序对数+右儿子内部的逆序对数+左右儿子组合的逆序对数

前两项与左右儿子的顺序无关,只需要决策最后一项即可,一路推到根节点即为答案

\(t1+=s[ls[x]]*s[rs[y]]\)

\(t2+=s[rs[x]]*s[ls[y]]\)

在合并时顺便统计两种决策,最后答案加上 \(Min(t1,t2)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=400005;
int root[N],val[N],totnode=0,cnt=1,ls[N*20],rs[N*20],n;
ll ans=0,t1=0,t2=0,s[N*20];int L[N],R[N];
void dfs(int x){
scanf("%d",&val[x]);
if(!val[x]){
L[x]=++cnt;dfs(L[x]);
R[x]=++cnt;dfs(R[x]);
}
}
void ins(int &rt,int l,int r,int sa){
if(!rt)rt=++totnode;
if(l==r){s[rt]=1;return ;}
int mid=(l+r)>>1;
if(sa<=mid)ins(ls[rt],l,mid,sa);
else ins(rs[rt],mid+1,r,sa);
s[rt]=s[ls[rt]]+s[rs[rt]];
}
int merge(int x,int y){
if(!x)return y;if(!y)return x;
t1+=s[ls[x]]*s[rs[y]];
t2+=s[rs[x]]*s[ls[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
s[x]=s[ls[x]]+s[rs[x]];
return x;
}
void solve(int x){
if(!x)return ;
solve(L[x]);solve(R[x]);
if(!val[x]){
t1=0;t2=0;
root[x]=merge(root[L[x]],root[R[x]]);
ans+=Min(t1,t2);
}
}
void work()
{
scanf("%d",&n);
dfs(1);
for(int i=1;i<=cnt;i++)
if(val[i])ins(root[i],1,n,val[i]);
solve(1);
printf("%lld\n",ans);
} int main(){work();return 0;}

bzoj 2212: [Poi2011]Tree Rotations的更多相关文章

  1. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  2. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  3. BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...

  4. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  5. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  6. 2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations https://www.lydsy.com/JudgeOnline/problem.php?id=2212 分析: 线段树合并. 首先对每个 ...

  7. 【BZOJ】2212: [Poi2011]Tree Rotations

    题意 给一棵\(n(1 \le n \le 200000)\)个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 分析 可以发现如果交换非叶结点的左右子树,对子树内的交换无影响, ...

  8. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  9. BZOJ2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 391  Solved: 127[Submi ...

随机推荐

  1. 关于collectionView和tableView的两种cell的出列方法的区别

    相信好多人一定会对collectionView和tableView的两种cell出列方法有所疑问,下面以UICollection为例子进行举例说明 假设我们已经创建了一个collectionView, ...

  2. Flask 部署和分发

    到目前为止,启动Flask应用都是通过"app.run()"方法,在开发环境中,这样固然可行,不过到了生产环境上,势必需要采用一个健壮的,功能强大的Web应用服务器来处理各种复杂情 ...

  3. 使用PostMan进行API自动化测试

    最近在进行一个老项目的升级,第一步是先将node版本从4.x升级到8.x,担心升级会出现问题,所以需要将服务的接口进行验证:如果手动输入各种URL,人肉check,一个两个还行,整个服务..大几十个接 ...

  4. LR回放https协议脚本失败: 错误 -27778: 在尝试与主机“www.baidu.com”connect 时发生 SSL 协议错误

    今天用LR录制脚本协议为https协议,回放脚本时出现报错: Action.c(14): 错误 -27778: 在尝试与主机"www.baidu.com"connect 时发生 S ...

  5. 腾讯云服务器上安装phstudy和lnmp

    phpstudy的安装:wget -c http://lamp.phpstudy.net/phpstudy.bin chmod +x phpstudy.bin #权限设置./phpstudy.bin ...

  6. Linux的rsync 配置,用于服务器之间远程传大量的数据

    [教程主题]:rsync [课程录制]: 创E [主要内容] [1] rsync介绍 Rsync(Remote Synchronize) 是一个远程资料同步工具,可通过LAN/WAN快速同步多台主机, ...

  7. selenium的Python使用(一)浏览器驱动的安装及使用

    一.selenium的安装 直接使用pip进行安装 pip install selenium    #(安装最新版本) pip install selenium==3.6.0   #(安装指定版本) ...

  8. Python内置函数(21)——tuple

    英文文档: The constructor builds a tuple whose items are the same and in the same order as iterable's it ...

  9. Mego开发文档 - 保存关系数据

    保存关系数据 由于没有对象的更改跟踪,因此关系的操作需要开发者明确指定,在成功执行后Mego会影响到相应的关系属性中. 添加关系 在以下示例中如果成功执行则source的Customer属性会变为ta ...

  10. Docker学习笔记 - Docker的远程访问

    学习内容: 配置客户端与守护进程的远程访问 服务端配置-H选项: 使服务端支持远程被访问 客户端使用-H选项: 使客户端访问远程服务端 本地环境DOCKER_HOST设置客户端访问的默认服务端地址 准 ...