Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle.

Note that the row index starts from 0.


In Pascal's triangle, each number is the sum of the two numbers directly above it.

Example:

Input: 3
Output: [1,3,3,1]

Follow up:

Could you optimize your algorithm to use only O(k) extra space?

杨辉三角想必大家并不陌生,应该最早出现在初高中的数学中,其实就是二项式系数的一种写法。

        1
       1 1
      1 2 1
     1 3 3 1
    1 4 6 4 1
   1 5 10 10 5 1
  1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

杨辉三角形第n层(顶层称第0层,第1行,第n层即第 n+1 行,此处n为包含0在内的自然数)正好对应于二项式  展开的系数。例如第二层 1 2 1 是幂指数为2的二项式  展开形式  的系数。

杨辉三角主要有下列五条性质:

  1. 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
  2. 行的数字个数为个。
  3. 行的第个数字为组合数 
  4. 行数字和为 
  5. 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第行第个数字等于第  行的第  个数字与第个数字的和)。这是因为有组合恒等式:。可用此性质写出整个杨辉三角形。

由于题目有额外限制条件,程序只能使用 O(k) 的额外空间,那么这样就不能把每行都算出来,而是要用其他的方法, 我最先考虑用的是第三条性质,算出每个组合数来生成第n行系数,代码请参见评论区一楼。本地调试输出前十行,没啥问题,拿到 OJ 上测试,程序在第 18 行跪了,中间有个系数不正确。那么问题出在哪了呢,仔细找找,原来出在计算组合数那里,由于算组合数时需要算连乘,而整型数 int 的数值范围只有 -32768 到 32768 之间,那么一旦n值过大,连乘肯定无法计算。而丧心病狂的 OJ 肯定会测试到成百上千行,所以这个方法不行。那么我们再来考虑利用第五条性质,除了第一个和最后一个数字之外,其他的数字都是上一行左右两个值之和。那么我们只需要两个 for 循环,除了第一个数为1之外,后面的数都是上一次循环的数值加上它前面位置的数值之和,不停地更新每一个位置的值,便可以得到第n行的数字,具体实现代码如下:

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> res(rowIndex + );
res[] = ;
for (int i = ; i <= rowIndex; ++i) {
for (int j = i; j >= ; --j) {
res[j] += res[j - ];
}
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/119

类似题目:

Pascal's Triangle

参考资料:

https://leetcode.com/problems/pascals-triangle-ii/

https://leetcode.com/problems/pascals-triangle-ii/discuss/38420/Here-is-my-brief-O(k)-solution

https://leetcode.com/problems/pascals-triangle-ii/discuss/38478/My-accepted-java-solution-any-better-code

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Pascal's Triangle II 杨辉三角之二的更多相关文章

  1. [LeetCode] 119. Pascal's Triangle II 杨辉三角之二

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

  2. [LeetCode] 119. Pascal's Triangle II 杨辉三角 II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  3. Leetcode#118. Pascal's Triangle(杨辉三角)

    题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: [ [1], [1,1], [1,2, ...

  4. LeetCode 118. Pascal's Triangle (杨辉三角)

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  5. 每天一道LeetCode--118. Pascal's Triangle(杨辉三角)

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  6. LeetCode Pascal's Triangle II (杨辉三角)

    题意:给出杨辉三角的层数k,返回最后一层.k=0时就是只有一个数字1. 思路:滚动数组计算前一半出来,返回时再复制另一半.简单但是每一句都挺长的. 0ms的版本: class Solution { p ...

  7. LeetCode(119):杨辉三角 II

    Easy! 题目描述: 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: ...

  8. LeetCode: Pascal's Triangle II 解题报告

    Pascal's Triangle II Total Accepted: 19384 Total Submissions: 63446 My Submissions Question Solution ...

  9. 学会从后往前遍历,例 [LeetCode] Pascal's Triangle II,剑指Offer 题4

    当我们需要改变数组的值时,如果从前往后遍历,有时会带来很多麻烦,比如需要插入值,导致数组平移,或者新的值覆盖了旧有的值,但旧有的值依然需要被使用.这种情况下,有时仅仅改变一下数组的遍历方向,就会避免这 ...

随机推荐

  1. 自己动手,实现一种类似List<T>的数据结构(二)

    前言: 首先,小匹夫要祝各位看官圣诞快乐,新年愉快-.上一篇文章<自己动手,实现一种类似List<T>的数据结构(一)> 介绍了一下不依靠List<T>实现的各种接 ...

  2. ASP.NET Core 中文文档 第四章 MVC(3.1)视图概述

    原文:Views Overview 作者:Steve Smith 翻译:姚阿勇(Dr.Yao) 校对:高嵩(Jack) ASP.NET MVC Core 的控制器可以利用 视图 返回格式化结果. 什么 ...

  3. Python黑帽编程 3.4 跨越VLAN

    Python黑帽编程 3.4 跨域VLAN VLAN(Virtual Local Area Network),是基于以太网交互技术构建的虚拟网络,既可以将同一物理网络划分成多个VALN,也可以跨越物理 ...

  4. .Net语言 APP开发平台——Smobiler学习日志:如何快速实现类似于微信的悬浮显示二维码效果

    最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 样式一 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的&qu ...

  5. 初识C#接口

    C# 接口(Interface) 接口定义了所有类继承接口时应遵循的语法合同.接口定义了语法合同 "是什么" 部分,派生类定义了语法合同 "怎么做" 部分. 接 ...

  6. PHP数组详解

    作为一名C++程序员,在转做PHP开发的过程中,对PHP数组产生了一些混淆,与C++数组有相似的地方,也有一些不同,下面就全面地分析一下PHP的数组及其与C++中相应数据类型的区别和联系. 数组的分类 ...

  7. C#开发微信门户及应用(32)--微信支付接入和API封装使用

    在微信的应用上,微信支付是一个比较有用的部分,但也是比较复杂的技术要点,在微商大行其道的年代,自己的商店没有增加微信支付好像也说不过去,微信支付旨在为广大微信用户及商户提供更优质的支付服务,微信的支付 ...

  8. Xamarin Android 之起始篇

    序言: 在博客园注册了已经有2年多了,快三年了.从开始学习这一行开始就在博客园注册了这个账号.至今也还没有写过一篇随笔,大多时候都是在园子里头潜水,看大牛写的文章,学习. 写博客不为啥,就是自己对自己 ...

  9. spider RPC过滤器

    spider支持在请求执行前或完成后进行特殊处理,比如安全性检查.敏感字段混淆等等.为此,spider提供了BeforeFilter和AfterFilter.其执行位置如下图所示: 流水线插件配置在s ...

  10. WCF服务启用与配置端口共享

    在 Windows Communication Foundation (WCF) 应用程序中使用 net.tcp:// 端口共享的最简单方式是使用 NetTcpBinding 公开一个服务. 此绑定提 ...