声明:本文转自《在Spark中自定义Kryo序列化输入输出API

    在Spark中内置支持两种系列化格式:(1)、Java serialization;(2)、Kryo serialization。在默认情况下,Spark使用的是Java的ObjectOutputStream系列化框架,它支持所有继承java.io.Serializable的类系列化,虽然Java系列化非常灵活,但是它的性能不佳。然而我们可以使用Kryo 库来系列化,它相比Java serialization系列化高效,速度很快(通常比Java快10x),但是它不支持所有的系列化对象,而且要求用户注册类。

  在Spark中,使用Kryo系列化比使用Java系列化更明智。在shuffling和caching大量数据的情况下,使用 Kryo系列化就变得非常重要。

  虽然Kryo支持对RDD的cache和shuffle,但是在Spark中不是内置就显示提供使用Kryo将数据系列化到磁盘中的输入输出API,RDD中的saveAsObjectFile和SparkContext中的objectFile方法仅仅支持使用Java系列化。所以如果我们可以使用Kryo系列化将会变得很棒!

实现代码:

import java.sql.Timestamp
import java.text.SimpleDateFormat
import java.util.Calendar import org.apache.spark.api.java.JavaPairRDD
import org.apache.spark.api.java.function.PairFunction
import org.apache.spark.sql.functions._
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.hive.HiveContext
import java.io._ import com.esotericsoftware.kryo.io.Input
import org.apache.hadoop.conf._
import org.apache.hadoop.fs._
import org.apache.hadoop.fs.Path._
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.Path
import org.apache.hadoop.fs.permission.FsAction
import org.apache.hadoop.fs.permission.FsPermission
import org.apache.hadoop.fs.FSDataOutputStream
import org.apache.hadoop.io.{BytesWritable, NullWritable}
import org.apache.spark.rdd.RDD
import org.apache.spark.serializer.KryoSerializer import scala.reflect.ClassTag // user defined class that need to serialized
class Person(val name: String) /**
* Created by Administrator on 11/10/2017.
*/
object TestSaveClasToHdfs{ def saveAsObjectFile[T: ClassTag](rdd: RDD[T], path: String) {
val kryoSerializer = new KryoSerializer(rdd.context.getConf)
rdd.mapPartitions(iter => iter.grouped()
.map(_.toArray))
.map(splitArray => {
//initializes kyro and calls your registrator class
val kryo = kryoSerializer.newKryo() //convert data to bytes
val bao = new ByteArrayOutputStream()
val output = kryoSerializer.newKryoOutput()
output.setOutputStream(bao)
kryo.writeClassAndObject(output, splitArray)
output.close() // We are ignoring key field of sequence file
val byteWritable = new BytesWritable(bao.toByteArray)
(NullWritable.get(), byteWritable)
}).saveAsSequenceFile(path)
} def objectFile[T](sc: SparkContext, path: String, minPartitions: Int = )(implicit ct: ClassTag[T]) = {
val kryoSerializer = new KryoSerializer(sc.getConf)
sc.sequenceFile(path, classOf[NullWritable], classOf[BytesWritable],
minPartitions)
.flatMap(x => {
val kryo = kryoSerializer.newKryo()
val input = new Input()
input.setBuffer(x._2.getBytes)
val data = kryo.readClassAndObject(input)
val dataObject = data.asInstanceOf[Array[T]]
dataObject
})
} def main(args: Array[String]) {
if (args.length < ) {
println("Please provide output path")
return
}
val conf = new SparkConf().setMaster("local").setAppName("kryoexample")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sc = new SparkContext(conf) val outputPath = args() //create some dummy data
val personList = to map (value => new Person(value + ""))
val personRDD = sc.makeRDD(personList) saveAsObjectFile(personRDD, outputPath)
val rdd = objectFile[Person](sc, outputPath)
println(rdd.map(person => person.name).collect().toList)
}
}

在spark-shell中执行时,一直出现错误,但是当我把它编译为jar包使用spark-submit命令提交时,错误就没有了。

Spark:将RDD[List[String,List[Person]]]中的List[Person]通过spark api保存为hdfs文件时一直出现not serializable task,没办法找到"spark自定义Kryo序列化输入输出API"的更多相关文章

  1. 在Spark中自定义Kryo序列化输入输出API(转)

    原文链接:在Spark中自定义Kryo序列化输入输出API 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况 ...

  2. PHP保存数组到文件中的方法

    ThinkPHP自3.1以后的版本,F函数保存数组时先序列化后再保存到文件中,因为我需要使用C方法来读取自定义配置文件,故需要把PHP数组保存到文件中以便C方法读取,PHP保存数组到文件的方法如下: ...

  3. java spark list 转为 RDD 转为 dataset 写入表中

    package com.example.demo; import java.util.ArrayList; import java.util.Arrays; import java.util.Hash ...

  4. 理解Spark的RDD

    RDD是个抽象类,定义了诸如map().reduce()等方法,但实际上继承RDD的派生类一般只要实现两个方法: def getPartitions: Array[Partition] def com ...

  5. (转)Spark JAVA RDD API

    对API的解释: 1.1 transform l  map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集 l   ...

  6. [转]Spark学习之路 (三)Spark之RDD

    Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...

  7. Spark学习之路 (三)Spark之RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  8. Spark的RDD原理以及2.0特性的介绍

    转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn ...

  9. 【spark】RDD创建

    首先我们要建立 sparkconf 配置文件,然后通过配置文件来建立sparkcontext. import org.apache.spark._ object MyRdd { def main(ar ...

随机推荐

  1. git记录(给老婆找的地址)

    ssh配置 https://blog.igevin.info/posts/generate-ssh-key-for-git/ git 查看某个文件的修改历史 1. git log -p filenam ...

  2. [Luogu P1564] 膜拜

    Description 神牛有很多-当然-每个同学都有自己衷心膜拜的神牛. 某学校有两位神牛,神牛甲和神牛乙.新入学的N 位同学们早已耳闻他们的神话. 所以,已经衷心地膜拜其中一位了.现在,老师要给他 ...

  3. 插入排序—直接插入排序(Straight Insertion Sort)

    基本思想: 将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表.即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插插入到已入,直至整个序列有序为止. 要点: ...

  4. 【Pycharm】 写python代码的优秀IDE Pycharm

    Pycharm 在用pycharm之前,我一直用的是本身也是由python写的ulipad做我的IDE,在linux上的话就直接用vim编辑器.但是碰到pycharm之后觉得这玩意儿太NB了,虽然说不 ...

  5. zabbix监控redis性能

    创建采集脚本 mkdir -p /etc/zabbix/scripts chown -R zabbix.root /etc/zabbix/scripts vim redis_status.sh  #! ...

  6. [bzoj1026][SCOI2009]windy数_数位dp

    windy数 bzoj-1026 题目大意:求一段区间中的windy数个数. 注释:如果一个数任意相邻两位的差的绝对值都不小于2,这个数就是windy数,没有前导0.$区间边界<=2\cdot ...

  7. web 表单提交按钮的测试点

    web表单中的提交按钮的测试点: 在提交前需要理解清楚的点: 1.表单中哪些字段是必填项 2.表单中字段内容的限制:非空.重复.长度.特殊字符,空格.以及一些和业务相关的约束条件 测试点: 1.是否支 ...

  8. UI线程异常处理方法

    当应用程序启动,创建了一个叫“main”的线程,用于管理UI相关,又叫UI线程.其他线程叫工作线程(Work Thread). Single Thread Model 一个组件的创建并不会新建一个线程 ...

  9. .Net开发之旅(一个年少轻狂的程序员的感慨)

    高端大气上档次.这次当时一个身为懵懂初中生的我对程序员这一职位的描述.那时虽不是随处都能看到黑客大军的波及,但至少是知道所谓的黑客爸爸的厉害,一言不合说被黑就被黑.对于懵懂的我那是一种向往.自己也曾想 ...

  10. 利用1.1.1.1进行DNS网络加速,仅需2分钟让网络更快

    NEWS 近日,Cloudflare 和 APNIC联合推出了1.1.1.1DNS网络加速. Cloudflare 运行全球规模最大.速度最快的网络之一.APNIC 是一个非营利组织,管理着亚太和大洋 ...