声明:本文转自《在Spark中自定义Kryo序列化输入输出API

    在Spark中内置支持两种系列化格式:(1)、Java serialization;(2)、Kryo serialization。在默认情况下,Spark使用的是Java的ObjectOutputStream系列化框架,它支持所有继承java.io.Serializable的类系列化,虽然Java系列化非常灵活,但是它的性能不佳。然而我们可以使用Kryo 库来系列化,它相比Java serialization系列化高效,速度很快(通常比Java快10x),但是它不支持所有的系列化对象,而且要求用户注册类。

  在Spark中,使用Kryo系列化比使用Java系列化更明智。在shuffling和caching大量数据的情况下,使用 Kryo系列化就变得非常重要。

  虽然Kryo支持对RDD的cache和shuffle,但是在Spark中不是内置就显示提供使用Kryo将数据系列化到磁盘中的输入输出API,RDD中的saveAsObjectFile和SparkContext中的objectFile方法仅仅支持使用Java系列化。所以如果我们可以使用Kryo系列化将会变得很棒!

实现代码:

import java.sql.Timestamp
import java.text.SimpleDateFormat
import java.util.Calendar import org.apache.spark.api.java.JavaPairRDD
import org.apache.spark.api.java.function.PairFunction
import org.apache.spark.sql.functions._
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.hive.HiveContext
import java.io._ import com.esotericsoftware.kryo.io.Input
import org.apache.hadoop.conf._
import org.apache.hadoop.fs._
import org.apache.hadoop.fs.Path._
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.Path
import org.apache.hadoop.fs.permission.FsAction
import org.apache.hadoop.fs.permission.FsPermission
import org.apache.hadoop.fs.FSDataOutputStream
import org.apache.hadoop.io.{BytesWritable, NullWritable}
import org.apache.spark.rdd.RDD
import org.apache.spark.serializer.KryoSerializer import scala.reflect.ClassTag // user defined class that need to serialized
class Person(val name: String) /**
* Created by Administrator on 11/10/2017.
*/
object TestSaveClasToHdfs{ def saveAsObjectFile[T: ClassTag](rdd: RDD[T], path: String) {
val kryoSerializer = new KryoSerializer(rdd.context.getConf)
rdd.mapPartitions(iter => iter.grouped()
.map(_.toArray))
.map(splitArray => {
//initializes kyro and calls your registrator class
val kryo = kryoSerializer.newKryo() //convert data to bytes
val bao = new ByteArrayOutputStream()
val output = kryoSerializer.newKryoOutput()
output.setOutputStream(bao)
kryo.writeClassAndObject(output, splitArray)
output.close() // We are ignoring key field of sequence file
val byteWritable = new BytesWritable(bao.toByteArray)
(NullWritable.get(), byteWritable)
}).saveAsSequenceFile(path)
} def objectFile[T](sc: SparkContext, path: String, minPartitions: Int = )(implicit ct: ClassTag[T]) = {
val kryoSerializer = new KryoSerializer(sc.getConf)
sc.sequenceFile(path, classOf[NullWritable], classOf[BytesWritable],
minPartitions)
.flatMap(x => {
val kryo = kryoSerializer.newKryo()
val input = new Input()
input.setBuffer(x._2.getBytes)
val data = kryo.readClassAndObject(input)
val dataObject = data.asInstanceOf[Array[T]]
dataObject
})
} def main(args: Array[String]) {
if (args.length < ) {
println("Please provide output path")
return
}
val conf = new SparkConf().setMaster("local").setAppName("kryoexample")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sc = new SparkContext(conf) val outputPath = args() //create some dummy data
val personList = to map (value => new Person(value + ""))
val personRDD = sc.makeRDD(personList) saveAsObjectFile(personRDD, outputPath)
val rdd = objectFile[Person](sc, outputPath)
println(rdd.map(person => person.name).collect().toList)
}
}

在spark-shell中执行时,一直出现错误,但是当我把它编译为jar包使用spark-submit命令提交时,错误就没有了。

Spark:将RDD[List[String,List[Person]]]中的List[Person]通过spark api保存为hdfs文件时一直出现not serializable task,没办法找到"spark自定义Kryo序列化输入输出API"的更多相关文章

  1. 在Spark中自定义Kryo序列化输入输出API(转)

    原文链接:在Spark中自定义Kryo序列化输入输出API 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况 ...

  2. PHP保存数组到文件中的方法

    ThinkPHP自3.1以后的版本,F函数保存数组时先序列化后再保存到文件中,因为我需要使用C方法来读取自定义配置文件,故需要把PHP数组保存到文件中以便C方法读取,PHP保存数组到文件的方法如下: ...

  3. java spark list 转为 RDD 转为 dataset 写入表中

    package com.example.demo; import java.util.ArrayList; import java.util.Arrays; import java.util.Hash ...

  4. 理解Spark的RDD

    RDD是个抽象类,定义了诸如map().reduce()等方法,但实际上继承RDD的派生类一般只要实现两个方法: def getPartitions: Array[Partition] def com ...

  5. (转)Spark JAVA RDD API

    对API的解释: 1.1 transform l  map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集 l   ...

  6. [转]Spark学习之路 (三)Spark之RDD

    Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...

  7. Spark学习之路 (三)Spark之RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  8. Spark的RDD原理以及2.0特性的介绍

    转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn ...

  9. 【spark】RDD创建

    首先我们要建立 sparkconf 配置文件,然后通过配置文件来建立sparkcontext. import org.apache.spark._ object MyRdd { def main(ar ...

随机推荐

  1. python趣味——与MS系列编译器一样强大的Unicode变量名支持

    中文变量名,中文函数名,中文类名等,可惜Python2不支持,但在Python3时代,这些都可以完美支持了. def 中文函数(): return 1

  2. 微软Skype Linux客户端全新发布

    前两天,微软说要给“Linux 用户带来一个令人兴奋的新闻”,今天,这个新闻来了.它刚刚为 Linux 发布了一个新的 Skype 客户端. 此次发布,微软为 Linux 带来的 Skype 客户端与 ...

  3. SpringtMVC中配置 <mvc:annotation-driven/> 与 <mvc:default-servlet-handler/> 源码解析

    上一篇有提到,当有.无这两个标签时,SpringtMVC 底层所采用的  HandlerMapping 以及 HandlerAdapter 是不一样的.现在就来进行源码调试,揭开 SpringtMVC ...

  4. IntelliJ IDEA 2017.1.5迁移eclipse,SSM项目,通过jrebel实现热部署

    1.首先打开idea,配置SVN版本控制器的路径 2.配置maven 3.配置jrebel热部署的路径 4.从svn到出项目 5.配置配置tomacat参数-server -XX:PermSize=1 ...

  5. RxJS速成 (上)

    What is RxJS? RxJS是ReactiveX编程理念的JavaScript版本.ReactiveX是一种针对异步数据流的编程.简单来说,它将一切数据,包括HTTP请求,DOM事件或者普通数 ...

  6. nbtstat

    某个主机的ip地址为:192.168.155.1 我们通过nbtstat -a ip命令就可知道这个主机的名称信息.

  7. 用C#开发的一个通用的地铁换乘查询工具

    日常生活中,上班下班坐地铁已经是常事,每当我想去某一个远一点的地方,如果有地铁首选就是地铁,因为方便嘛!每次坐地铁,我们都是凭肉眼去得出我们心中最佳的换乘方案,但是,如果对于线路较少的城市来说,这个方 ...

  8. Flash Builder4.7安装破解

    引用自CSDN博客,日后我会上传FlashBuilder到百度网盘谢谢 http://bbs.csdn.net/topics/391036327

  9. 视图和URL配置

    视图和URL配置 实验简介 上一章里我们介绍了如何创建一个Django项目并启动Django的开发服务器.本章你将学到用Django创建动态网页的基本知识. 同时,也教会大家怎么在本地机器上建立一个独 ...

  10. IQKeyboardManager使用方法

    使用方法: 将IQKeyboardManager 和 IQSegmentedNextPrevious类文件加进项目中.在AppDelegate文件中写下以下一行代码: [IQKeyBoardManag ...