BZOJ_2303_[Apio2011]方格染色 _并查集

Description

Sam和他的妹妹Sara有一个包含n × m个方格的
表格。她们想要将其的每个方格都染成红色或蓝色。
出于个人喜好,他们想要表格中每个2 ×   2的方形区
域都包含奇数个(1 个或 3 个)红色方格。例如,右
图是一个合法的表格染色方案(在打印稿中,深色代
表蓝色,浅色代表红色) 。
可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara
非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格
仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?

Input

输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染
色的方格数目。
之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别
代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红
色,ci为 0表示方格被染成蓝色。

Output

输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。

对于所有的测试数据,2 ≤ n, m ≤ 106
,0 ≤ k ≤ 10^6
,1 ≤ xi ≤ n,1 ≤ yi ≤ m。

Sample Input

3 4 3
2 2 1
1 2 0
2 3 1

Sample Output

8

对于(i,j)有a[i][j]^a[i+1][j]^a[i][j+1]^a[i+1][j+1]=1
从(1,1)到(i-1,j-1)的这个式子全都异或起来。
得到a[1][1]^a[1][j]^a[i][1]^a[i][j]=[i%2==0&&j%2==0]。
即确定了第一行和第一列的颜色就确定了整个方格的颜色。
于是枚举(1,1)的颜色,对于每个(x,y,c),把a[1][y]和a[x][1]用并查集连起来。
有环则无解,否则答案等于二的连通块个数-1次方。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 2000050
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
int fa[N],n,m,a[N],k,xx[N],yy[N],cc[N];
ll mod=1000000000;
ll qp(ll x,ll y) {ll re=1; for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;}
int find(int x) {
if(fa[x]==x) return x;
int tmp=find(fa[x]);
a[x]^=a[fa[x]];
return fa[x]=tmp;
}
int main() {
n=rd(); m=rd(); k=rd();
register int i;
for(i=1;i<=k;i++) {
xx[i]=rd(); yy[i]=rd(); cc[i]=rd();
}
int col1,flg[2];
flg[0]=flg[1]=0;
ll ans=0;
for(col1=0;col1<2;col1++) {
int cnt=0;
for(i=1;i<=n+m-1;i++) fa[i]=i,a[i]=0;
for(i=1;i<=k;i++) {
int p=col1^cc[i]^(xx[i]%2==0&&yy[i]%2==0);
int x=xx[i],y=yy[i]+n-1;
int dx=find(x),dy=find(y);
if(dx!=dy) {
fa[dx]=dy;
a[dx]=a[y]^a[x]^p;
}else {
if((a[x]^a[y])!=p) {
flg[col1]=1; break;
}
}
}
for(i=1;i<=n+m-1;i++) {
if(fa[i]==i) {
cnt++;
}
}
cnt--;
if(!flg[col1]) {
ans=(ans+qp(2,cnt))%mod;
}
}
printf("%lld\n",ans);
}

BZOJ_2303_[Apio2011]方格染色 _并查集的更多相关文章

  1. BZOJ2303: [Apio2011]方格染色 【并查集】

    Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 ...

  2. bzoj 2303: [Apio2011]方格染色【并查集】

    画图可知,每一行的状态转移到下一行只有两种:奇数列不变,偶数列^1:偶数列不变,奇数列^1 所以同一行相邻的变革染色格子要放到同一个并查集里,表示这个联通块里的列是联动的 最后统计下联通块数(不包括第 ...

  3. BZOJ2303 APIO2011方格染色(并查集)

    比较难想到的是将题目中的要求看做异或.那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1.瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)& ...

  4. [BZOJ2303][Apio2011]方格染色

    [BZOJ2303][Apio2011]方格染色 试题描述 Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好,他们想要表格中每个2 × ...

  5. BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集

    BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集 Description     农夫约翰有N(2≤N≤40000)个农场,标号1到N,M( ...

  6. BZOJ_1015_[JSOI2008]星球大战_并查集

    BZOJ_1015_[JSOI2008]星球大战_并查集 题意:很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的 机遇,一支反抗军摧毁了帝国的超级武器, ...

  7. BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换

    BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...

  8. BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集+树形DP

    BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集. Description 奶牛们遭到了进攻!在他们的共和国里,有N(1 <= N <=50,000)个城市,由M(1 ...

  9. BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]

    题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...

随机推荐

  1. iOS使用第三方管理工具

    1.安装cocoaPods 移除当前镜像,因为需要FQ跨域访问 001.gem source --remove https://rubygems.org/ 使用淘宝镜像安装 002.https://r ...

  2. Configure the MySQL account associate to the domain user via MySQL Windows Authentication Plugin

    在此记录如何将之前一次做第三发软件在配置的过程. 将AD user通过代理映射到mysql 用户. 在Mysql官网有这样一段话: The server-side Windows authentica ...

  3. spring-cloud-config安全问题

    配置服务的安全问题会很重要,其中的内容是我自己学习的,由于学习时间不长,有可能不是很完备,如果有更好的方案,烦请评论中留言或私信,谢谢! 1. 首先访问配置服务需要设置密码: 使用spring-sec ...

  4. IT轮子系列(二)——mvc API 说明文档的自动生成——Swagger的使用(一)

    这篇文章主要介绍如何使用Swashbuckle插件在VS 2013中自动生成MVC API项目的说明文档.为了更好说明的swagger生成,我们从新建一个空API项目开始. 第一步.新建mvc api ...

  5. 学习MQ(一) 感知

    声明:我的文字里出现的MQ,如没有特殊指明,就是指的IBM的websphere MQ 以前对MQ一无所知! MQ是IBM websphere的系列产品之一,是很好的一个中间件产品.其实我对这列产品并不 ...

  6. 全局程序集缓存GAC

    GAC中的所有的Assembly都会存放在系统目录"%winroot%\assembly下面.放在系统目录下的好处之一是可以让系统管理员通过用户权限来控制Assembly的访问. 目录:C: ...

  7. rsync的详细配置

    服务器配置: yum install rsync   安装rsync vi /etc/rsyncd.conf   创建主配置文件 pid file = /var/run/rsyncd.pid port ...

  8. Java永久代去哪儿了

    http://www.infoq.com/cn/articles/Java-PERMGEN-Removed 在Java虚拟机(以下简称JVM)中,类包含其对应的元数据,比如类的层级信息,方法数据和方法 ...

  9. 原生Feign使用详解

    一,简介 Feign使得 Java HTTP 客户端编写更方便.Feign 灵感来源于Retrofit.JAXRS-2.0和WebSocket.Feign最初是为了降低统一绑定Denominator到 ...

  10. OpenApi开放平台架构实践

    背景 随着业务的发展,越来越多不同系统之间需要数据往来,我们和外部系统之间产生了数据接口的对接.当然,有我们提供给外部系统(工具)的,也有我们调用第三方的.而这里重点讲一下我们对外的接口. 目前,我们 ...