• Kafka Brokers per Server

    • Recommend 1 Kafka broker per server- Kafka not only disk-intensive but can be network intensive so if you run multiple broker in a single host network I/O can be the bottleneck . Running single broker per host and having a cluster will give you better availability.
  • Increase Disks allocated to Kafka Broker
    • Kafka parallelism is largely driven by the number of disks and partitions per topic.
    • From the Kafka documentation: “We recommend using multiple drives to get good throughput and not sharing the same drives used for Kafka data with application logs or other OS filesystem activity to ensure good latency. As of 0.8 you can format and mount each drive as its own directory. If you configure multiple data directories partitions will be assigned round-robin to data directories. Each partition will be entirely in one of the data directories. If data is not well balanced among partitions this can lead to load imbalance between disks.”
  • Number of Threads
    • Make sure you set num.io.threads to at least no.of disks you are going to use by default its 8. It be can higher than the number of disks.
    • Set num.network.threads higher based on number of concurrent producers, consumers, and replication factor.
  • Number of partitions
    • Ideally you want to assign the default number of partitions (num.partitions) to at least n-1 servers. This can break up the write workload and it allows for greater parallelism on the consumer side. Remember that Kafka does total ordering within a partition, not over multiple partitions, so make sure you partition intelligently on the producer side to parcel up units of work that might span multiple messages/events.
  • Message Size
    • Kafka is designed for small messages. I recommend you to avoid using kafka for larger messages. If thats not avoidable there are several ways to go about sending larger messages like 1MB. Use compression if the original message is json, xml or text using compression is the best option to reduce the size. Large messages will affect your performance and throughput. Check your topic partitions and replica.fetch.size to make sure it doesn’t go over your physical ram.
  • Large Messages
    • Another approach is to break the message into smaller chunks and use the same message key to send it same partition. This way you are sending small messages and these can be re-assembled at the consumer side.
    • Broker side:
    1. message.max.bytes defaults to 1000000 . This indicates the maximum size of message that a kafka broker will accept.
    2. replica.fetch.max.bytes defaults to 1MB . This has to be bigger than message.max.bytes otherwise brokers will not be able to replicate messages.
  • Consumer side:
    1. fetch.message.max.bytes defaults to 1MB. This indicates maximum size of a message that a consumer can read. This should be equal or larger than message.max.bytes.
  • Kafka Heap Size
    • By default kafka-broker jvm is set to 1Gb this can be increased using Ambari kafka-env template. When you are sending large messages JVM garbage collection can be an issue. Try to keep the Kafka Heap size below 4GB.

      • Example: In kafka-env.sh add following settings.

        • export KAFKA_HEAP_OPTS="-Xmx16g -Xms16g"
        • export KAFKA_JVM_PERFORMANCE_OPTS="-XX:MetaspaceSize=96m -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:G1HeapRegionSize=16M -XX:MinMetaspaceFreeRatio=50 -XX:MaxMetaspaceFreeRatio=80"
  • Dedicated Zookeeper
    • Have a separate zookeeper cluster dedicated to Storm/Kafka operations. This will improve Storm/Kafka’s performance for writing offsets to Zookeeper, it will not be competing with HBase or other components for read/write access.
  • ZK on separate nodes from Kafka Broker
    • Do Not Install zk nodes on the same node as kafka broker if you want optimal Kafka performance. Disk I/O both kafka and zk are disk I/O intensive.
  • Disk Tuning sections
  • Minimal replication
    • If you are doing replication, start with 2x rather than 3x for Kafka clusters larger than 3 machines. Alternatively, use 2x even if a 3 node cluster if you are able to reprocess upstream from your source.
  • Avoid Cross Rack Kafka deployments

Kafka Tuning Recommendations的更多相关文章

  1. 深入了解SQL Tuning Advisor(转载)

    1.前言:一直以来SQL调优都是DBA比较费力的技术活,而且很多DBA如果没有从事过开发的工作,那么调优更是一项头疼的工作,即使是SQL调优很厉害的高手,在SQL调优的过程中也要不停的分析执行计划.加 ...

  2. Kafka性能调优 - Kafka优化的方法

    今天,我们将讨论Kafka Performance Tuning.在本文“Kafka性能调优”中,我们将描述在设置集群配置时需要注意的配置.此外,我们将讨论Tuning Kafka Producers ...

  3. jmeter分布式压测

    stop.sh需要跑Jmeter的服务器上安装Jmeteryum install lrzsz 安装rz.sz命令rz jemter的压缩包 拷贝到/usr/local/tools下面unzip apa ...

  4. jmeter学习记录--03--jmeter负载与监听

    jmeter场景主要通过线程组设置完成,有些复杂场景需要与逻辑控制器配合. 一.测试计划设计与执行 场景设计 jmete线程组实际是一个线程池,根据用户设置进行线程池的初始优化,在运行时做各种异常的处 ...

  5. jmeter对自身性能的优化

    测试环境 apache-jmeter-2.13   1.   问题描述 单台机器的下JMeter启动较大线程数时可能会出现运行报错的情况,或者在运行一段时间后,JMeter每秒生成的请求数会逐步下降, ...

  6. JMeter JMeter自身运行性能优化

    JMeter自身运行性能优化   by:授客 QQ:1033553122 测试环境 apache-jmeter-2.13   1.   问题描述 单台机器的下JMeter启动较大线程数时可能会出现运行 ...

  7. 【翻译自mos文章】私有网络所用的协议 与 Oracle RAC

    说的太经典了,不敢翻译.直接上原文. 来源于: Network Protocols and Real Application Clusters (文档 ID 278132.1) PURPOSE --- ...

  8. JMeter内存溢出:java.lang.OutOfMemoryError: Java heap space解决方法

    一.问题原因 用JMeter压测,有时候当模拟并发请求较大或者脚本运行时间较长时,JMeter会停止,报OOM(内存溢出)错误. 原因是JMeter是一个纯Java开发的工具,内存由java虚拟机JV ...

  9. Jmeter系列(35)- 设置JVM内存

    场景 单台机器的下JMeter启动较大线程数时可能会出现运行报错的情况,或者在运行一段时间后,JMeter每秒生成的请求数会逐步下降,直到为0,即JMeter运行变得很"卡",这时 ...

随机推荐

  1. DNS服务详解

    DNS服务 目录: 一.DNS原理 二.DNS服务的安装与配置 三.DNS信息收集 一.DNS原理 1.hosts文件与DNS服务器 1.1hosts文件 目录:C:\WINDOWS\system32 ...

  2. linux常用命令小结

    其他类 clear 清屏 文件管理 chmod 修改文件权限. 常用列表: chmod +x 使文件变为可执行文件. 常用于sh脚本. touch 创建文件 tar 压缩文件操作. -zxvf, 解压 ...

  3. mapbox.gl源码解析——基本架构与数据渲染流程

    加载地图 Mapbox GL JS是一个JavaScript库,使用WebGL渲染交互式矢量瓦片地图和栅格瓦片地图.WebGL渲染意味着高性能,MapboxGL能够渲染大量的地图要素,拥有流畅的交互以 ...

  4. python maximum recursion depth exceeded 处理办法

    1.在执行命令 pyinstaller -F D:\py\programe\banksystem.py打包生成.exe文件时报错:python maximum recursion depth exce ...

  5. 【神经网络篇】--基于数据集cifa10的经典模型实例

    一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import ...

  6. Nosql与关系型数据库不同的使用场景

    Nosql 1.适合存储非结构化数据存储,数据量且不可预期.如:评论,文章 2.排行榜数据获取,实时更新的数据.如:游戏榜排名,用户投票 3.限时抢购活动.如:淘宝抢购活动 4.反垃圾系统.如:敏感词 ...

  7. Elasticsearch的基本概念和指标

    背景 在13年的时候,我开始负责整个公司的搜索引擎.嗯……,不是很牛的那种大项目负责人.而是整个搜索就我一个人做.哈哈. 后来跳槽之后,所经历的团队都用Elasticsearch,基本上和缓存一样,是 ...

  8. TypeScript 中的方法重载

    方法重载(overload)在传统的静态类型语言中是很常见的.JavaScript 作为动态语言, 是没有重载这一说的.一是它的参数没有类型的区分,二是对参数个数也没有检查.虽然语言层面无法自动进行重 ...

  9. Gulp(自动化构建工具 )

    前言 Gulp,简而言之,就是前端自动化开发工具,利用它,我们可以提高开发效率. 比如: 1.  压缩js 2.  压缩css 3.  压缩less 4.  压缩图片 等等… 我们完全可以利用Gulp ...

  10. 发现了一个App拉新工具:免填邀请码

    去年公司开始着手开发一个App项目,从调研到开发完成,前前后后历时快半年(没少加班),目前产品已经上架了各个应用市场,名字就不提了,省得说我打广告.今年开年说要开始做冷启动了,大家都知道,这才是最苦逼 ...