• Kafka Brokers per Server

    • Recommend 1 Kafka broker per server- Kafka not only disk-intensive but can be network intensive so if you run multiple broker in a single host network I/O can be the bottleneck . Running single broker per host and having a cluster will give you better availability.
  • Increase Disks allocated to Kafka Broker
    • Kafka parallelism is largely driven by the number of disks and partitions per topic.
    • From the Kafka documentation: “We recommend using multiple drives to get good throughput and not sharing the same drives used for Kafka data with application logs or other OS filesystem activity to ensure good latency. As of 0.8 you can format and mount each drive as its own directory. If you configure multiple data directories partitions will be assigned round-robin to data directories. Each partition will be entirely in one of the data directories. If data is not well balanced among partitions this can lead to load imbalance between disks.”
  • Number of Threads
    • Make sure you set num.io.threads to at least no.of disks you are going to use by default its 8. It be can higher than the number of disks.
    • Set num.network.threads higher based on number of concurrent producers, consumers, and replication factor.
  • Number of partitions
    • Ideally you want to assign the default number of partitions (num.partitions) to at least n-1 servers. This can break up the write workload and it allows for greater parallelism on the consumer side. Remember that Kafka does total ordering within a partition, not over multiple partitions, so make sure you partition intelligently on the producer side to parcel up units of work that might span multiple messages/events.
  • Message Size
    • Kafka is designed for small messages. I recommend you to avoid using kafka for larger messages. If thats not avoidable there are several ways to go about sending larger messages like 1MB. Use compression if the original message is json, xml or text using compression is the best option to reduce the size. Large messages will affect your performance and throughput. Check your topic partitions and replica.fetch.size to make sure it doesn’t go over your physical ram.
  • Large Messages
    • Another approach is to break the message into smaller chunks and use the same message key to send it same partition. This way you are sending small messages and these can be re-assembled at the consumer side.
    • Broker side:
    1. message.max.bytes defaults to 1000000 . This indicates the maximum size of message that a kafka broker will accept.
    2. replica.fetch.max.bytes defaults to 1MB . This has to be bigger than message.max.bytes otherwise brokers will not be able to replicate messages.
  • Consumer side:
    1. fetch.message.max.bytes defaults to 1MB. This indicates maximum size of a message that a consumer can read. This should be equal or larger than message.max.bytes.
  • Kafka Heap Size
    • By default kafka-broker jvm is set to 1Gb this can be increased using Ambari kafka-env template. When you are sending large messages JVM garbage collection can be an issue. Try to keep the Kafka Heap size below 4GB.

      • Example: In kafka-env.sh add following settings.

        • export KAFKA_HEAP_OPTS="-Xmx16g -Xms16g"
        • export KAFKA_JVM_PERFORMANCE_OPTS="-XX:MetaspaceSize=96m -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:G1HeapRegionSize=16M -XX:MinMetaspaceFreeRatio=50 -XX:MaxMetaspaceFreeRatio=80"
  • Dedicated Zookeeper
    • Have a separate zookeeper cluster dedicated to Storm/Kafka operations. This will improve Storm/Kafka’s performance for writing offsets to Zookeeper, it will not be competing with HBase or other components for read/write access.
  • ZK on separate nodes from Kafka Broker
    • Do Not Install zk nodes on the same node as kafka broker if you want optimal Kafka performance. Disk I/O both kafka and zk are disk I/O intensive.
  • Disk Tuning sections
  • Minimal replication
    • If you are doing replication, start with 2x rather than 3x for Kafka clusters larger than 3 machines. Alternatively, use 2x even if a 3 node cluster if you are able to reprocess upstream from your source.
  • Avoid Cross Rack Kafka deployments

Kafka Tuning Recommendations的更多相关文章

  1. 深入了解SQL Tuning Advisor(转载)

    1.前言:一直以来SQL调优都是DBA比较费力的技术活,而且很多DBA如果没有从事过开发的工作,那么调优更是一项头疼的工作,即使是SQL调优很厉害的高手,在SQL调优的过程中也要不停的分析执行计划.加 ...

  2. Kafka性能调优 - Kafka优化的方法

    今天,我们将讨论Kafka Performance Tuning.在本文“Kafka性能调优”中,我们将描述在设置集群配置时需要注意的配置.此外,我们将讨论Tuning Kafka Producers ...

  3. jmeter分布式压测

    stop.sh需要跑Jmeter的服务器上安装Jmeteryum install lrzsz 安装rz.sz命令rz jemter的压缩包 拷贝到/usr/local/tools下面unzip apa ...

  4. jmeter学习记录--03--jmeter负载与监听

    jmeter场景主要通过线程组设置完成,有些复杂场景需要与逻辑控制器配合. 一.测试计划设计与执行 场景设计 jmete线程组实际是一个线程池,根据用户设置进行线程池的初始优化,在运行时做各种异常的处 ...

  5. jmeter对自身性能的优化

    测试环境 apache-jmeter-2.13   1.   问题描述 单台机器的下JMeter启动较大线程数时可能会出现运行报错的情况,或者在运行一段时间后,JMeter每秒生成的请求数会逐步下降, ...

  6. JMeter JMeter自身运行性能优化

    JMeter自身运行性能优化   by:授客 QQ:1033553122 测试环境 apache-jmeter-2.13   1.   问题描述 单台机器的下JMeter启动较大线程数时可能会出现运行 ...

  7. 【翻译自mos文章】私有网络所用的协议 与 Oracle RAC

    说的太经典了,不敢翻译.直接上原文. 来源于: Network Protocols and Real Application Clusters (文档 ID 278132.1) PURPOSE --- ...

  8. JMeter内存溢出:java.lang.OutOfMemoryError: Java heap space解决方法

    一.问题原因 用JMeter压测,有时候当模拟并发请求较大或者脚本运行时间较长时,JMeter会停止,报OOM(内存溢出)错误. 原因是JMeter是一个纯Java开发的工具,内存由java虚拟机JV ...

  9. Jmeter系列(35)- 设置JVM内存

    场景 单台机器的下JMeter启动较大线程数时可能会出现运行报错的情况,或者在运行一段时间后,JMeter每秒生成的请求数会逐步下降,直到为0,即JMeter运行变得很"卡",这时 ...

随机推荐

  1. Linux 操作系统基础

    list : ls 目录: 文件,路径映射. ls : -l : lang 长格式, 显示完整信息. 文件类型: -: 普通文件(f) d: 目录文件 b: 块设备文件(block) c: 字块设备文 ...

  2. kettle 备注

    1. 基本组成 1.1 spoon: 一个可视化的工具,用于编辑kettle ETL的任务脚本 1.2 span: 用以命令行方式执行spoon的转换 1.3 kitchen: 用以命令行方式执行sp ...

  3. 借助Chrome和插件爬取数据

    工具 Chrome浏览器 TamperMonkey ReRes Chrome浏览器 chrome浏览器是目前最受欢迎的浏览器,没有之一,它兼容大部分的w3c标准和ecma标准,对于前端工程师在开发过程 ...

  4. oracle和mysql批量合并对比

    orm框架采用mybatis,本博客介绍一下批量合并merge用oracle和mysql来做的区别, oracle merge合并更新函数的详细介绍可以参考我以前的博客:https://blog.cs ...

  5. 【朝花夕拾】四大组件之(二)Service篇

    一.Service是什么 对于这个问题,想必大家都能说出一二,如“它是四大组件之一”.“在后台处理一些操作”等.咱们这里看看官方文档中的描述,官方语言一般都是准确且言简意赅的,这里可以体验一下其风格. ...

  6. 《前端之路》之二:数据类型转换 && 隐式转换 || 显式转换

    目录 02:数据类型转换 && 隐式转换 || 显式转换 02:数据类型转换 && 隐式转换 || 显式转换 在上一个章节中,我们介绍了 JavaScript 的基本的 ...

  7. 从零开始学习PYTHON3讲义(十二)画一颗心送给你

    (内容需要,本讲使用了大量在线公式,如果因为转帖网站不支持公式无法显示的情况,欢迎访问原始博客.) <从零开始PYTHON3>第十二讲 上一节课我们主要讲解了数值计算和符号计算.数值计算的 ...

  8. TabBottomFragmentLayout【自定义底部选项卡区域(搭配Fragment)】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 自定义底部选项卡布局LinearLayout类,然后配合Fragment,实现切换Fragment功能. 缺点: 1.底部选项卡区域 ...

  9. 权限管理系统之SpringBoot集成LayUI实现后台管理首页

    万事开头难,昨天一直在构思用户权限管理系统怎么实现,实现哪些需求,采用什么技术等,也在网上百度了好多,计划使用SpringBoot + Mybatis + thymeleaf  + LayUI + S ...

  10. docker run 之后执行多条命令

    执行 ls docker run microsoft/dotnet ls && cd /root 执行 多条使用sh -c命令 在run后面加了一个sh -c命令,后面直接加多条语句即 ...