Kafka Tuning Recommendations
- Kafka Brokers per Server
- Recommend 1 Kafka broker per server- Kafka not only disk-intensive but can be network intensive so if you run multiple broker in a single host network I/O can be the bottleneck . Running single broker per host and having a cluster will give you better availability.
- Increase Disks allocated to Kafka Broker
- Kafka parallelism is largely driven by the number of disks and partitions per topic.
- From the Kafka documentation: “We recommend using multiple drives to get good throughput and not sharing the same drives used for Kafka data with application logs or other OS filesystem activity to ensure good latency. As of 0.8 you can format and mount each drive as its own directory. If you configure multiple data directories partitions will be assigned round-robin to data directories. Each partition will be entirely in one of the data directories. If data is not well balanced among partitions this can lead to load imbalance between disks.”
- Number of Threads
- Make sure you set num.io.threads to at least no.of disks you are going to use by default its 8. It be can higher than the number of disks.
- Set num.network.threads higher based on number of concurrent producers, consumers, and replication factor.
- Number of partitions
- Ideally you want to assign the default number of partitions (num.partitions) to at least n-1 servers. This can break up the write workload and it allows for greater parallelism on the consumer side. Remember that Kafka does total ordering within a partition, not over multiple partitions, so make sure you partition intelligently on the producer side to parcel up units of work that might span multiple messages/events.
- Message Size
- Kafka is designed for small messages. I recommend you to avoid using kafka for larger messages. If thats not avoidable there are several ways to go about sending larger messages like 1MB. Use compression if the original message is json, xml or text using compression is the best option to reduce the size. Large messages will affect your performance and throughput. Check your topic partitions and replica.fetch.size to make sure it doesn’t go over your physical ram.
- Large Messages
- Another approach is to break the message into smaller chunks and use the same message key to send it same partition. This way you are sending small messages and these can be re-assembled at the consumer side.
- Broker side:
- message.max.bytes defaults to 1000000 . This indicates the maximum size of message that a kafka broker will accept.
- replica.fetch.max.bytes defaults to 1MB . This has to be bigger than message.max.bytes otherwise brokers will not be able to replicate messages.
- Consumer side:
- fetch.message.max.bytes defaults to 1MB. This indicates maximum size of a message that a consumer can read. This should be equal or larger than message.max.bytes.
- Kafka Heap Size
- By default kafka-broker jvm is set to 1Gb this can be increased using Ambari kafka-env template. When you are sending large messages JVM garbage collection can be an issue. Try to keep the Kafka Heap size below 4GB.
- Example: In kafka-env.sh add following settings.
- export KAFKA_HEAP_OPTS="-Xmx16g -Xms16g"
- export KAFKA_JVM_PERFORMANCE_OPTS="-XX:MetaspaceSize=96m -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:G1HeapRegionSize=16M -XX:MinMetaspaceFreeRatio=50 -XX:MaxMetaspaceFreeRatio=80"
- Example: In kafka-env.sh add following settings.
- By default kafka-broker jvm is set to 1Gb this can be increased using Ambari kafka-env template. When you are sending large messages JVM garbage collection can be an issue. Try to keep the Kafka Heap size below 4GB.
- Dedicated Zookeeper
- Have a separate zookeeper cluster dedicated to Storm/Kafka operations. This will improve Storm/Kafka’s performance for writing offsets to Zookeeper, it will not be competing with HBase or other components for read/write access.
- ZK on separate nodes from Kafka Broker
- Do Not Install zk nodes on the same node as kafka broker if you want optimal Kafka performance. Disk I/O both kafka and zk are disk I/O intensive.
- Disk Tuning sections
- Please review the Kafka documentation on filesystem tuning parameters here.
- Disable THP according to documentation here.
- Either ext4 or xfs filesystems are recommended for performance benefit.
- Minimal replication
- If you are doing replication, start with 2x rather than 3x for Kafka clusters larger than 3 machines. Alternatively, use 2x even if a 3 node cluster if you are able to reprocess upstream from your source.
- Avoid Cross Rack Kafka deployments
- Avoid cross-rack Kafka deployments for now until Kafka 0.8.2 - see: https://issues.apache.org/jira/browse/KAFKA-1215
Kafka Tuning Recommendations的更多相关文章
- 深入了解SQL Tuning Advisor(转载)
1.前言:一直以来SQL调优都是DBA比较费力的技术活,而且很多DBA如果没有从事过开发的工作,那么调优更是一项头疼的工作,即使是SQL调优很厉害的高手,在SQL调优的过程中也要不停的分析执行计划.加 ...
- Kafka性能调优 - Kafka优化的方法
今天,我们将讨论Kafka Performance Tuning.在本文“Kafka性能调优”中,我们将描述在设置集群配置时需要注意的配置.此外,我们将讨论Tuning Kafka Producers ...
- jmeter分布式压测
stop.sh需要跑Jmeter的服务器上安装Jmeteryum install lrzsz 安装rz.sz命令rz jemter的压缩包 拷贝到/usr/local/tools下面unzip apa ...
- jmeter学习记录--03--jmeter负载与监听
jmeter场景主要通过线程组设置完成,有些复杂场景需要与逻辑控制器配合. 一.测试计划设计与执行 场景设计 jmete线程组实际是一个线程池,根据用户设置进行线程池的初始优化,在运行时做各种异常的处 ...
- jmeter对自身性能的优化
测试环境 apache-jmeter-2.13 1. 问题描述 单台机器的下JMeter启动较大线程数时可能会出现运行报错的情况,或者在运行一段时间后,JMeter每秒生成的请求数会逐步下降, ...
- JMeter JMeter自身运行性能优化
JMeter自身运行性能优化 by:授客 QQ:1033553122 测试环境 apache-jmeter-2.13 1. 问题描述 单台机器的下JMeter启动较大线程数时可能会出现运行 ...
- 【翻译自mos文章】私有网络所用的协议 与 Oracle RAC
说的太经典了,不敢翻译.直接上原文. 来源于: Network Protocols and Real Application Clusters (文档 ID 278132.1) PURPOSE --- ...
- JMeter内存溢出:java.lang.OutOfMemoryError: Java heap space解决方法
一.问题原因 用JMeter压测,有时候当模拟并发请求较大或者脚本运行时间较长时,JMeter会停止,报OOM(内存溢出)错误. 原因是JMeter是一个纯Java开发的工具,内存由java虚拟机JV ...
- Jmeter系列(35)- 设置JVM内存
场景 单台机器的下JMeter启动较大线程数时可能会出现运行报错的情况,或者在运行一段时间后,JMeter每秒生成的请求数会逐步下降,直到为0,即JMeter运行变得很"卡",这时 ...
随机推荐
- Nginx下载服务器配置文件
server { listen 8080; server_name localhost; #charset koi8-r; charset utf-8; #access_log logs/host.a ...
- 关于web资金系统提现安全保护,防止极快的重复并发请求导致重复提现的解决思路
关于WEB金融系统中的提现安全问题很多人没有深入思想,导致有漏洞,常常会遇到有些人遇到被攻击到导资金损失的麻烦, 其实要彻底解决重复并发请求 导致重复提现问题,是需要花点心思的,并没有看起来的 ...
- CSS Sprites(基本写法,怎样使用)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/XTQueen_up/article/details/37601361 说白就是用样式表切一个大图片 ...
- Linux iptables用法与NAT
1.相关概念 2.iptables相关用法 3.NAT(DNAT与SNAT) 相关概念 防火墙除了软件及硬件的分类,也可对数据封包的取得方式来分类,可分为代理服务器(Proxy)及封包过滤机制(IP ...
- 超好用的C#控制台应用模板
本文是Wei的公众号投稿文章: 默认模板之缺 在工作学习中,我们经常需要创建一些简单的控制台应用(Console App)去验证某个想法,或者作为小工具交付给其他同事. 通常我们的选择是 Visual ...
- Javascript高级编程学习笔记(94)—— Canvas(11) 合成
合成 除了之前介绍的属性之外,还有两个属性会应用到整个2d上下文中; globalAlpha 用于指定所有绘制的透明度 globalComposition 用于表示后绘制的图形怎样与先绘制的图形进行结 ...
- [Inside HotSpot] C1编译器工作流程及中间表示
1. C1编译器线程 C1编译器(aka Client Compiler)的代码位于hotspot\share\c1.C1编译线程(C1 CompilerThread)会阻塞在任务队列,当发现队列有编 ...
- 每日分享!介绍Css 盒模型!
如何定义盒模型: 在CSS盒子模型理论中,页面中所有的元素都是看成一个盒子,并且还占据一定的空间. 一个页面是由很多这样的盒子组成的.这些盒子之间都会相会影响,因此我们掌握CSS盒模型相当重要.需要理 ...
- Identity Server 4 - Hybrid Flow - MVC客户端身份验证
预备知识 可能需要看一点点预备知识 OAuth 2.0 不完全简介: https://www.cnblogs.com/cgzl/p/9221488.html OpenID Connect 不完全简介: ...
- SQL Server的case when用法
1.简单sql一例 SELECT top 10 CASE WHEN IDENTITY_ID='1' THEN '管理员' WHEN IDENTITY_ID='5' THEN '学生' ELSE '无' ...