滴:转载引用请注明哦【握爪】https://www.cnblogs.com/zyrb/p/9699168.html

  今天来进行讨论深度学习中的一种优化方法Label smoothing Regularization(LSR),即“标签平滑归一化”。由名字可以知道,它的优化对象是Label(Train_y)。

  对于分类问题,尤其是多类别分类问题中,常常把类别向量做成one-hot vector(独热向量)

简单地说,就是对于多分类向量,计算机中往往用[0, 1, 3]等此类离散的、随机的而非有序(连续)的向量表示,而one-hot vector 对应的向量便可表示为[0, 1, 0],即对于长度为n 的数组,只有一个元素是1,其余都为0。

之后在网络的最后一层(全连接层)后加一层softmax层,由于softmax输出是归一化的,所以认为该层的输出就是样本属于某类别的概率。而由于样本label是独热向量,因此表征我们已知样本属于某一类别的概率是为1的确定事件,属于其他类别的概率则均为0。

  【一】、首先明确一些变量的含义:

$z_i$:也为logits,未被归一化的对数概率;

$p$:predicted probability,预测的example的概率;

$q$:groundtruth probablity,真实的example的label概率;对于one-hot,真实概率为Dirac函数,即$​q(k)=δ_{k,y}$,其中y是真实类别。

$loss$:Cross Entropy,采用交叉熵损失。

softmax层的输出预测概率为:\begin{equation} p(k|x)=\frac{exp(z_k)}{\sum_{i}^{i=K}exp(z_i)} \end{equation}

交叉熵损失表示为:​\begin{equation}loss=−\sum_{k=1}^{K}q(k|x)log(p(k|x)) \end{equation}

对于logits,交叉熵是可微分的,偏导数的形式也较为简单:$\frac{∂loss}{∂zk}=p(k)−q(k)$(对于$p,q ∈[0, 1]$, 可以知道梯度是有界的∈[-1, 1])

  【二】、one-hot 带来的问题

  对于损失函数,我们需要用预测概率去拟合真实概率,而拟合one-hot的真实概率函数会带来两个问题:1)无法保证模型的泛化能力,容易造成过拟合;2) 全概率和0概率鼓励所属类别和其他类别之间的差距尽可能加大,而由梯度有界可知,这种情况很难adapt。会造成模型过于相信预测的类别。

  【三】、解决方案

  为了使得模型less confident,提出以下机制:,将$q(k)$函数改为$q(k)'$。

{原理解释}:对于以Dirac函数分布的真实标签,我们将它变成分为两部分获得(替换)

1) 第一部分:将原本Dirac分布的标签变量替换为(1 - ϵ)的Dirac函数;

2) 第二部分:以概率 ϵ ,在$u(k)$ 中份分布的随机变量。(在文章中,作者采用先验概率也就是均布概率,而K取值为num_class = 1000)

  从而交叉熵被替换为:

可以认为:Loss 函数为分别对【预测label与真实label】【预测label与先验分布】进行惩罚。

  【四】、优化结果

  文章表示,对K = 1000,ϵ = 0.1的优化参数,实验结果有0.2%的性能提升。

Reference:

1. Rethinking the Inception Architecture for Computer Vision

2. 深度学习中的各种tricks_1.0_label_smoothing

 

【Network】优化问题——Label Smoothing的更多相关文章

  1. 深度学习面试题28:标签平滑(Label smoothing)

    目录 产生背景 工作原理 参考资料 产生背景 假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为: ...

  2. softmax求导、cross-entropy求导及label smoothing

    softmax求导 softmax层的输出为 其中,表示第L层第j个神经元的输入,表示第L层第j个神经元的输出,e表示自然常数. 现在求对的导数, 如果j=i,   1 如果ji, 2 cross-e ...

  3. 标签平滑(Label Smoothing)详解

    什么是label smoothing? 标签平滑(Label smoothing),像L1.L2和dropout一样,是机器学习领域的一种正则化方法,通常用于分类问题,目的是防止模型在训练时过于自信地 ...

  4. label smoothing

  5. DeiT:注意力也能蒸馏

    DeiT:注意力也能蒸馏 <Training data-efficient image transformers & distillation through attention> ...

  6. Hinton等人最新研究:大幅提升模型准确率,标签平滑技术到底怎么用?

    Hinton等人最新研究:大幅提升模型准确率,标签平滑技术到底怎么用? 2019年07月06日 19:30:55 AI科技大本营 阅读数 675   版权声明:本文为博主原创文章,遵循CC 4.0 B ...

  7. GAN初步——本质上就是在做优化,对于生成器传给辨别器的生成图片,生成器希望辨别器打上标签 1,体现在loss上!

    from:https://www.sohu.com/a/159976204_717210 GAN 从 2014 年诞生以来发展的是相当火热,比较著名的 GAN 的应用有 Pix2Pix.CycleGA ...

  8. 在 ML2 中配置 OVS vlan network - 每天5分钟玩转 OpenStack(136)

    前面我们已经学习了 OVS 的 local 网络 和 falt 网络,今天开始讨论 vlan 网络. vlan network 是带 tag 的网络. 在 Open vSwitch 实现方式下,不同 ...

  9. Neutron Vlan Network 学习

    vlan network 是带 tag 的网络,是实际应用最广泛的网络类型.    下图是 vlan100 网络的示例.   1. 三个 instance 通过 TAP 设备连接到名为 brqXXXX ...

随机推荐

  1. Oracle 时间字段显示不正确,类型错误

    一.知识点 给Oracle的date类型字段设置默认值[设置为当前时间] to_date(to_char(sysdate,'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh ...

  2. MyDAL - .UpdateAsync() 之 .SetSegment 根据条件 动态设置 要更新的字段 使用

    索引: 目录索引 一.API 列表 1.SetSegment 属性,指示 根据条件 动态拼接 要修改的字段 见如下示例. 二.API 单表-完整 方法 举例 // update 要赋值的变量 var ...

  3. kali权限提升之配置不当提权与WCE

    kali权限提升之配置不当提权与WCE 1.利用配置不当提权 2.WCE 3.其他提权 一.利用配置不当提权 与漏洞提权相比更常用的方法 在大部分企业环境下,会有相应的补丁更新策略,因此难以通过相应漏 ...

  4. LeetCode算法题-Find Pivot Index(Java实现)

    这是悦乐书的第304次更新,第323篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第172题(顺位题号是724).给定一个整数nums数组,编写一个返回此数组的" ...

  5. 一个ELK日志检索实施案例

    figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...

  6. 浏览器仿EXCEL表格插件 版本更新 - 智表ZCELL产品V1.3.2更新

    智表(zcell)是一款浏览器仿excel表格jquery插件.智表可以为你提供excel般的智能体验,支持双击编辑.设置公式.设置显示小数精度.下拉框.自定义单元格.复制粘贴.不连续选定.合并单元格 ...

  7. 【spring源码分析】IOC容器初始化(十一)

    前言:前面分析了doCreateBean中的createBeanInstance函数,接下来分析其剩余流程. 首先贴上doCreateBean函数: // AbstractAutowireCapabl ...

  8. Linux 基础学习:文件权限与种类

    1.文件权限 linux系统中通过 “ls -al”,可查看当前目录的所有文件的详细信息. 第一列代表这个文件的类型与权限: 第一个字符表示文件类型: [d]:表示目录文件 [-]:表示普通文件 [l ...

  9. 【alpha阶段】第九次Scrum Meeting

    每日任务内容 队员 昨日完成任务 明日要完成的任务 牛宇航 #26 评价总览接口编写https://github.com/rRetr0Git/rateMyCourse/issues/26 #26 评价 ...

  10. 如何使用ASP.NET Core、EF Core、ABP(ASP.NET Boilerplate)创建分层的Web应用程序(第一部分)

    本文是为了学习ABP的使用,是翻译ABP官方文档的一篇实战教程,我暂时是优先翻译自己感兴趣或者比较想学习的部分,后续有时间希望能将ABP系列翻译出来,除了自己能学习外,有可能的话希望帮助一些英文阅读能 ...