已知$a^2+b^2+c^2=1$求$abc(a+b+c)$的最小值.(2018辽宁预赛解答压轴题)


不妨设$a+b+c=3u,ab+bc+ca=3v^2,abc=w^3$,令$u^2=tv^2$要求最小值只需考虑$a,b>0,c<0,a+b+c>0$此时$t<\dfrac{2}{3}$则
$\dfrac{abc(a+b+c)}{(a^2+b^2+c^2)^2}=\dfrac{3uw^3}{(9u^2-6v^2)^2}\ge \dfrac{3u(3uv^2-2u^3-2\sqrt{(u^2-v^2)^3})}{(9u^2-6v^2)^2}$

$=\dfrac{3t-2t^2-2\sqrt{t(t-1)^3}}{3(3t-2)^2}=f(t)$
求导$f^{'}(t)=\dfrac{-t^3+3t-2-\sqrt{(t-1)^3t}(t+6)}{3\sqrt{(t-1)^3t}(3t-2)^3}$
令$-t^3+3t-2=\sqrt{(t-1)^3t}(t+6)$两边平方整理得$(1-t)^3(9t^2+36t+4)=0$此时有根

$t=1,t=-2-\dfrac{4\sqrt{2}}{3},t=-2+\dfrac{4\sqrt{2}}{3}$故$f(t)_{min}=f(-2-\dfrac{4\sqrt{2}}{3})=\dfrac{-1-\sqrt{2}}{16}$

备注:$a,b,c\in R\Leftrightarrow (a-b)^2(b-c)^2(c-a)^2\ge0$
注意到“必背”恒等式$(a-b)^2(b-c)^2(c-a)^2=27(4(u^2-v^2)^3-(w^3-3uv^2+2u^3)^2)\ge0$得
$w^3\in[3uv^2-2u^3-2\sqrt{(u^2-v^2)^3},3uv^2-2u^3+2\sqrt{(u^2-v^2)^3}]$
注:(Schur's ineq)$\sum\limits_{cyc}a(a-b)(a-c)\ge0\Leftrightarrow w^3+3u^3\ge4uv^2$

MT【330】u,v,w法的更多相关文章

  1. 【学时总结】◆学时·V◆ 逆元法

    ◆学时·V◆ 逆元法 □算法概述□ 逆元运算是模运算中的一个技巧,一般用于解决模运算的除法问题.模运算对于加.减.乘是有封闭性的,即 (a±b)%m=a%m±b%m,以及 (a×b)%m=a%m×b% ...

  2. 20201219 u,v,w

    开考前刚起床,所以一边考一边吃饭,然后整场都很迷... A. u 考场 半天才搞懂"下三角区域"指哪个区域,手模样例确认后打了 \(O(qn^2)\) 的裸暴力,然后就不会做了. ...

  3. 9.27 csp-s模拟测试53 u+v+w

    T1 u 拿到题感觉他很水,但到死没想到正解,只会骗部分分(我太弱了) 考虑用两个差分数组维护,不同的是最后更新答案是$a[i][j]+=a[i-1][j-1]$,首先考虑在斜着加的起点,就是竖着的直 ...

  4. Turkey HSD检验法/W法

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  5. _DataStructure_C_Impl:Floyd算法求有向网N的各顶点v和w之间的最短路径

    #include<stdio.h> #include<stdlib.h> #include<string.h> typedef char VertexType[4] ...

  6. 偏流角为什么是arcsin(w/V)

    偏流角为什么是arcsin(w/V) 2015-10-22 风螺旋线   回答这个问题要从速度三角形说起(需要了解一点三角函数,但很基础,不用担心). 传统的速度三角形如下图所示: (背一段书) DA ...

  7. 【BZOJ-2618】凸多边形 计算几何 + 半平面交 + 增量法 + 三角剖分

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 959  Solved: 489[Submit][Status] ...

  8. 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573   ...

  9. 机器人局部避障的动态窗口法(dynamic window approach) (转)

    源:机器人局部避障的动态窗口法(dynamic window approach) 首先在V_m∩V_d的范围内采样速度: allowable_v = generateWindow(robotV, ro ...

随机推荐

  1. vs2015安装编辑神器:resharper10.0

    在平时的开发工作中,作为一名程序员,难免会想办法找到适合自己的开发编辑器.这款插件来自JetBrains公司.接下来就来教大家如何对这款软件进行安装与破解. 1:首先下载与安装.如果没有找到适合的资源 ...

  2. C# 中 equals( ) 和 == 的区别和用法

    Equals: 下面的语句中,x.y 和 z 表示不为 null 的对象引用. * 除涉及浮点型的情况外,x.Equals(x) 都返回 true. * x.Equals(y) 返回与 y.Equal ...

  3. Java 数组及数组常用算法

    1 数组也是一种类型 Java中要求所有的数组元素具有相同的数据类型.因此在一个数组中,数组元素的类型是唯一的,不能存储多种类型的数据. 一旦数组的初始化完成,数组在内存中所占的空间将被固定下来,因此 ...

  4. 并发concurrent---3

    背景:并发知识是一个程序员段位升级的体现,同样也是进入BAT的必经之路,有必要把并发知识重新梳理一遍. ConcurrentHashMap:在有了并发的基础知识以后,再来研究concurrent包.普 ...

  5. 非常易于理解‘类'与'对象’ 间 属性 引用关系,暨《Python 中的引用和类属性的初步理解》读后感

    关键字:名称,名称空间,引用,指针,指针类型的指针(即指向指针的指针) 我读完后的理解总结: 1. 我们知道,python中的变量的赋值操作,变量其实就是一个名称name,赋值就是将name引用到一个 ...

  6. mysql进阶知识

    一.存储引擎 引擎 指的是一个系统的核心部分 引擎有不同分类是为了适应不同的使用场景 查看mysql支持所有引擎 show engines; MRG_MYISAM 是一堆MYISAM表的集合 用于做水 ...

  7. python中的zip()函数和map()函数

    一.zip()函数 1.语法: zip(iterable, ...) 参数说明: iterable,...-- 一个或多个迭代器; 在python2中: zip() 函数用于将可迭代的对象作为参数,将 ...

  8. C# Dictionary 函数解析及使用方法

    要使用Dictionary集合,需要导入C#泛型命名空间 System.Collections.Generic(程序集:mscorlib)  Dictionary的描述 1.从一组键(Key)到一组值 ...

  9. Not on FX application thread; currentThread = AWT-EventQueue-0的解决方法

    swing awt跑javafx报了这问题 Not on FX application thread; currentThread = AWT-EventQueue-0 解决方法 Platform.r ...

  10. sql 存储过程学习

    1.存储过程 存储过程可以包含数据操纵语句.变量.逻辑 控制语句等,比如:单个select语句, select语句块,select语句与逻辑控制块. 存储过程优点: 执行速度更快 允许模块化程序设计 ...