Description

近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑。
与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神经网络模型。在卷积神经网络模型中,棋盘上每一
块特定大小的区域都被当做一个窗口。例如棋盘的大小为5×6,窗口大小为2×4,那么棋盘中共有12个窗口。此外
,模型中预先设定了一些模板,模板的大小与窗口的大小是一样的。下图展现了一个5×6的棋盘和两个2×4的模板
。对于一个模板,只要棋盘中有某个窗口与其完全匹配,我们称这个模板是被激活的,否则称这个模板没有被激活
。例如图中第一个模板就是被激活的,而第二个模板就是没有被激活的。我们要研究的问题是:对于给定的模板,
有多少个棋盘可以激活它。为了简化问题,我们抛开所有围棋的基本规则,只考虑一个n×m的棋盘,每个位置只能
是黑子、白子或无子三种情况,换句话说,这样的棋盘共有3n×m种。此外,我们会给出q个2×c的模板。我们希望
知道,对于每个模板,有多少种棋盘可以激活它。强调:模板一定是两行的。
 

Input

输入数据的第一行包含四个正整数n,m,c和q,分别表示棋盘的行数、列数、模板的列数和模板的数量。随后2×q
行,每连续两行描述一个模板。其中,每行包含c个字符,字符一定是‘W’,‘B’或‘X’中的一个,表示白子、
黑子或无子三种情况的一种。N<=100,M<=12,C<=6,Q<=5

Output

输出应包含q行,每行一个整数,表示符合要求的棋盘数量。由于答案可能很大,你只需要输出答案对1,000,000,007取模后的结果即可。

Sample Input

3 1 1 2
B
W
B
B

Sample Output

6
5
 
考虑补集转换,计算不合法的情况,然后轮廓线DP一下,状态记录为轮廓线上与第一行串是否完全匹配,当前位置与第一行串及第二行串的kmp匹配位置。
时间复杂度为O(T*N*M*2^M*C^2)
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int mod=1000000007;
char id[2333];
void Add(int& x,int y) {x+=y;if(x>=mod) x-=mod;}
int to1[8][3],to2[8][3];
void init(char* A,int* f,int c,int tp) {
id['W']='0';id['B']='1';id['X']='2';
rep(i,0,c-1) A[i]=id[A[i]];
rep(i,1,c-1) {
int j=f[i];
while(j&&A[i]!=A[j]) j=f[j];
f[i+1]=A[i]==A[j]?j+1:0;
}
rep(i,0,c) rep(k,0,2) {
int j=i;
while(j&&A[j]!=k+'0') j=f[j];
if(A[j]==k+'0') j++;
if(tp) to2[i][k]=j;
else to1[i][k]=j;
}
}
int n,m,c,f[2][1<<12][8][8],tmp[8];
char A[8],B[8];
void solve() {
int cur=0;scanf("%s%s",A,B);
init(A,tmp,c,0);init(B,tmp,c,1);
memset(f,0,sizeof(f));f[0][0][0][0]=1;
rep(x,1,n) rep(y,1,m) {
cur^=1;memset(f[cur],0,sizeof(f[cur]));
rep(S,0,(1<<m)-1) rep(i,0,c) rep(j,0,c) {
int& res=f[cur^1][S][i][j];if(!res) continue;
rep(k,0,2) {
int nx=to1[i][k],ny=to2[j][k],nS=S<<1;
if(nS>>m&1) nS^=(1<<m);if(nx==c) nS^=1;
if(y>=c&&ny==c&&(S>>(m-1)&1)) continue;
Add(f[cur][nS][nx][ny],res);
}
}
}
int ans=1;rep(i,1,n*m) ans=(ll)ans*3%mod;
rep(S,0,(1<<m)-1) rep(i,0,c) rep(j,0,c) Add(ans,mod-f[cur][S][i][j]);
printf("%d\n",ans);
}
int main() {
n=read();m=read();c=read();
dwn(T,read(),1) solve();
return 0;
}

  

BZOJ4572: [Scoi2016]围棋的更多相关文章

  1. 2019.03.25 bzoj4572: [Scoi2016]围棋(轮廓线dp)

    传送门 题解可以参见zjjzjjzjj神仙的,写的很清楚. 代码: #include<bits/stdc++.h> #define ri register int using namesp ...

  2. 【bzoj4572 scoi2016】围棋

    题目描述 近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑. 与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神经网络模型. ...

  3. [SCOI2016]围棋

    Description 近日,谷歌研发的围棋AI-AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑.与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神 ...

  4. BZOJ.4572.[SCOI2016]围棋(轮廓线DP)

    BZOJ 洛谷 \(Description\) 给定\(n,m,c\).\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过.棋盘的每个格子有三种状态. \( ...

  5. 4572: [Scoi2016]围棋 轮廓线DP KMP

    国际惯例的题面:这种题目显然DP了,看到M这么小显然要状压.然后就是具体怎么DP的问题.首先我们可以暴力状压上一行状态,然后逐行转移.复杂度n*3^m+3^(m*2),显然过不去. 考虑状态的特殊性, ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 一类巧妙利用利用失配树的序列DP

    I.导入 求长度为\(\text{len}\)的包含给定连续子串\(\text{T}\)的 0/1 串的个数.(\(|T|<=15\)) 通常来说这种题目应该立刻联想到状压 DP 与取反集--这 ...

  8. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  9. 【LOJ】#2017. 「SCOI2016」围棋

    题解 考虑到状态数比较复杂,其实我们需要轮廓线dp-- 我们设置\(f[x][y][S][h][k]\)为考虑到第(x,y)个格子,S是轮廓线上的匹配状态,是二进制,如果一位是1表示这一位匹配第一行匹 ...

随机推荐

  1. mui jquery 同时使用

    (function ($, doc, $$) { $.init(); $.ready(function () { var cityPicker = new $.PopPicker({ layer: } ...

  2. 获取APP最新版本的接口案例

    思路: 开发初期.安卓的应用可能没有上传到应用市场,可以把应用apk放到服务器上,供用户下载.把对应用的版本信息整理成为一个XML文件,放到服务器上,通过接口读取xml文件,获取有版本信息,然后安卓端 ...

  3. MRDS学习三——机械车的改良(Activity的介绍)

    Activity:VPL中化繁为简的工具,可以使得真个VPL容易让人看懂,也能跟好的控制.它就很像把一堆比较复杂但相关的流程组合成一个自定义的Activity. 完成Activity的定义: 第一步: ...

  4. css3动画简介以及动画库animate.css的使用

    在这个年代,你要是不懂一点点css3的知识,你都不好意思说你是个美工.美你妹啊,请叫我前端工程师好不好.呃..好吧,攻城尸...呵呵,作为一个攻城尸,没有点高端大气上档次的东西怎么能行呢,那么css3 ...

  5. avl树的操作证明

    以下用大O表示节点,ABC表示三个集合. 仅分析左子树的情况,因为对称,右子树的情况一样. 插入节点前 O /     \ O        A   /    \ B       C 插入节点后: O ...

  6. Spring各jar包的作用

    spring.jar是包含有完整发布的单个jar 包,spring.jar中包含除了spring-mock.jar里所包含的内容外其它所有jar包的内容,因为只有在开发环境下才会用到 spring-m ...

  7. CentOS6.3编译安装Memcached

    要用到如下源码包: /usr/local/src/memcached/libevent-2.0.21-stable.tar.gz /usr/local/src/memcached/memcached- ...

  8. .htaccess 基础教程(三)RewriteCond标志符,RewriteRule适用的标志符

    1.利用 .htaccess 防止盗链 如果不喜欢别人在他们的网页上链接自己的图片.文档的话,也可以通过htaccess的指令来做到.当然这样也可以对你的网站服务器压力变小! 这次先给出‘代码’,然后 ...

  9. 安卓TabHost页面

    <?xml version="1.0" encoding="UTF-8"?> <!-- TabHost组件id值不可变--> <T ...

  10. Asp.Net Core--自定义基于策略的授权

    翻译如下: 在封面下,角色授权和声明授权使用需求,需求的处理程序和预配置的策略. 这些构建块允许您在代码中表示授权评估,从而允许更丰富,可重用和容易测试的授权结构. 授权策略由一个或多个需求组成,并在 ...