F. Group Projects
 

There are n students in a class working on group projects. The students will divide into groups (some students may be in groups alone), work on their independent pieces, and then discuss the results together. It takes the i-th student ai minutes to finish his/her independent piece.

If students work at different paces, it can be frustrating for the faster students and stressful for the slower ones. In particular, the imbalance of a group is defined as the maximum ai in the group minus the minimum ai in the group. Note that a group containing a single student has an imbalance of 0. How many ways are there for the students to divide into groups so that the total imbalance of all groups is at most k?

Two divisions are considered distinct if there exists a pair of students who work in the same group in one division but different groups in the other.

Input

The first line contains two space-separated integers n and k (1 ≤ n ≤ 200, 0 ≤ k ≤ 1000) — the number of students and the maximum total imbalance allowed, respectively.

The second line contains n space-separated integers ai (1 ≤ ai ≤ 500) — the time it takes the i-th student to complete his/her independent piece of work.

Output

Print a single integer, the number of ways the students can form groups. As the answer may be large, print its value modulo 109 + 7.

Examples
input
3 2
2 4 5
output
3
Note

In the first sample, we have three options:

  • The first and second students form a group, and the third student forms a group. Total imbalance is 2 + 0 = 2.
  • The first student forms a group, and the second and third students form a group. Total imbalance is 0 + 1 = 1.
  • All three students form their own groups. Total imbalance is 0.

In the third sample, the total imbalance must be 0, so each student must work individually.

题意:

  给n个人, 让我们分成若干组, 每组的价值是最大值减去最小值,所有组价值之和不能超过k

  求方案数

题解:

  这个是一道很强的DP

  我们用dp[i][j][k]表示考虑了前i个数了, 有j个组是开放的(所谓开放指的是只有最小值, 还没有最大值, 还可以进人), 当前值之和为k 的方案数。

  我们先排序, 这样, 对于开放的组, 每次的累加量就都是 j*(a[i] - a[i-1])。

  那么转移的情况要考虑这么几个:

  1. 第i个数单组一组

  2.第i个数新开一组, 作为新组的最小值

  3.第i个数关闭一组, 作为这个组的最大值。

  4.第i个数进入j个组中的某一组。

  提示,要理解差分思想

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = +, M = 1e3+,inf = 2e9,mod = 1e9+; LL dp[][N][M];
int n,m,a[N];
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
sort(a+,a++n);
dp[][][] = ;
a[] = a[];
int now = ;
for(int i = ; i <= n; ++i) {
now ^= ;
memset(dp[now],,sizeof(dp[now]));
for(int j = ; j <= i; ++j) {
for(int k = ; k <= m; ++k) {
if(dp[now^][j][k] == ) continue; if(j*(a[i]-a[i-])+k > m) break; dp[now][j][j*(a[i]-a[i-])+k] += dp[now^][j][k],dp[now][j][j*(a[i]-a[i-])+k] %= mod;
dp[now][j+][j*(a[i]-a[i-])+k] += dp[now^][j][k],dp[now][j+][j*(a[i]-a[i-])+k] %= mod; if(j)dp[now][j-][k+j*(a[i]-a[i-])] += 1LL*j*dp[now^][j][k],dp[now][j-][k+j*(a[i]-a[i-])]%=mod; dp[now][j][k+j*(a[i]-a[i-])] += 1LL*j*dp[now^][j][k],dp[now][j][k+j*(a[i]-a[i-])] %= mod; }
}
}
LL ans = ;
for(int i = ; i <= m; ++i) {
ans = (ans + dp[now][][i])%mod;
}
printf("%lld\n",ans);
return ;
}

Codeforces 8VC Venture Cup 2016 - Elimination Round F. Group Projects 差分DP*****的更多相关文章

  1. 8VC Venture Cup 2016 - Elimination Round F. Group Projects dp

    F. Group Projects 题目连接: http://www.codeforces.com/contest/626/problem/F Description There are n stud ...

  2. 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题

    F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...

  3. codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre

    C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...

  4. 8VC Venture Cup 2016 - Elimination Round

    在家补补题   模拟 A - Robot Sequence #include <bits/stdc++.h> char str[202]; void move(int &x, in ...

  5. 8VC Venture Cup 2016 - Elimination Round G. Raffles 线段树

    G. Raffles 题目连接: http://www.codeforces.com/contest/626/problem/G Description Johnny is at a carnival ...

  6. 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力

    D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...

  7. 8VC Venture Cup 2016 - Elimination Round (C. Block Towers)

    题目链接:http://codeforces.com/contest/626/problem/C 题意就是给你n个分别拿着2的倍数积木的小朋友和m个分别拿着3的倍数积木的小朋友,每个小朋友拿着积木的数 ...

  8. 8VC Venture Cup 2016 - Elimination Round E. Simple Skewness 暴力+二分

    E. Simple Skewness 题目连接: http://www.codeforces.com/contest/626/problem/E Description Define the simp ...

  9. 8VC Venture Cup 2016 - Elimination Round C. Block Towers 二分

    C. Block Towers 题目连接: http://www.codeforces.com/contest/626/problem/C Description Students in a clas ...

随机推荐

  1. Java&Android代码规范

    项目中直接导入Square的代码风格文件.(不导入Google的原因是Square同时提供了Java和Android两套统一风格,Google只提供了一套) Square Code Styles Go ...

  2. offset家族

  3. 【Luogu】P1383高级打字机

    可持久化线段树模板题之一. 权当温习主席树模板 #include<cstdio> #include<cstdlib> #include<cctype> #defin ...

  4. BZOJ 2780 [Spoj]8093 Sevenk Love Oimaster ——广义后缀自动机

    给定n个串m个询问,问每个串在n个串多少个串中出现了. 构建广义后缀自动机,(就是把所有字符串的后缀自动机合并起来)其实只需要add的时候注意一下就可以了. 然后对于每一个串,跑一边匹配,到达了now ...

  5. BZOJ3122 [Sdoi2013]随机数生成器 【BSGS】

    题目 输入格式 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 输出 ...

  6. __new__ 与 __init__的区别

    原文地址:http://www.cnblogs.com/ifantastic/p/3175735.html 单例模式 class Singleton(object): def __new__(cls, ...

  7. Mysql字符集与校对规则

    字符集是一套字符和编码的集合,校对规则是用于比较字符集的一套规则. 所以字符集有两部分组成字符集合和对应的编码集合.比如说,现在有这几个字符:A B a b, 假设它们对应的编码分别是00, 01, ...

  8. PSEUDO LEAST RECENTLY USED (PLRU) CACHE REPLACEMENT

    A multi-way cache system includes multi-way cache storage circuitry, a pseudo least recently used (P ...

  9. 转载自csdn http://blog.csdn.net/ithomer/article/details/6035627 Vim的分屏功能

    Vim的分屏功能 目录(?)[+] 本篇文章主要教你如何使用 Vim 分屏功能 分屏启动Vim 使用小写的o参数来上下分屏(横向分屏). vim -on file1 file2 ... 使用大写的O参 ...

  10. Linux下二进制包、源代码包、rpm包

    主要提供三种格式的mysql包:rpm格式.二进制格式.源码格式:(tar打包,gz压缩) rpm格式: libjpeg-devel-6b-33.x86_64.rpm       #rpm格式很好区分 ...