Codeforces 8VC Venture Cup 2016 - Elimination Round F. Group Projects 差分DP*****
There are n students in a class working on group projects. The students will divide into groups (some students may be in groups alone), work on their independent pieces, and then discuss the results together. It takes the i-th student ai minutes to finish his/her independent piece.
If students work at different paces, it can be frustrating for the faster students and stressful for the slower ones. In particular, the imbalance of a group is defined as the maximum ai in the group minus the minimum ai in the group. Note that a group containing a single student has an imbalance of 0. How many ways are there for the students to divide into groups so that the total imbalance of all groups is at most k?
Two divisions are considered distinct if there exists a pair of students who work in the same group in one division but different groups in the other.
The first line contains two space-separated integers n and k (1 ≤ n ≤ 200, 0 ≤ k ≤ 1000) — the number of students and the maximum total imbalance allowed, respectively.
The second line contains n space-separated integers ai (1 ≤ ai ≤ 500) — the time it takes the i-th student to complete his/her independent piece of work.
Print a single integer, the number of ways the students can form groups. As the answer may be large, print its value modulo 109 + 7.
3 2
2 4 5
3
In the first sample, we have three options:
- The first and second students form a group, and the third student forms a group. Total imbalance is 2 + 0 = 2.
- The first student forms a group, and the second and third students form a group. Total imbalance is 0 + 1 = 1.
- All three students form their own groups. Total imbalance is 0.
In the third sample, the total imbalance must be 0, so each student must work individually.
题意:
给n个人, 让我们分成若干组, 每组的价值是最大值减去最小值,所有组价值之和不能超过k
求方案数
题解:
这个是一道很强的DP
我们用dp[i][j][k]表示考虑了前i个数了, 有j个组是开放的(所谓开放指的是只有最小值, 还没有最大值, 还可以进人), 当前值之和为k 的方案数。
我们先排序, 这样, 对于开放的组, 每次的累加量就都是 j*(a[i] - a[i-1])。
那么转移的情况要考虑这么几个:
1. 第i个数单组一组
2.第i个数新开一组, 作为新组的最小值
3.第i个数关闭一组, 作为这个组的最大值。
4.第i个数进入j个组中的某一组。
提示,要理解差分思想
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = +, M = 1e3+,inf = 2e9,mod = 1e9+; LL dp[][N][M];
int n,m,a[N];
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
sort(a+,a++n);
dp[][][] = ;
a[] = a[];
int now = ;
for(int i = ; i <= n; ++i) {
now ^= ;
memset(dp[now],,sizeof(dp[now]));
for(int j = ; j <= i; ++j) {
for(int k = ; k <= m; ++k) {
if(dp[now^][j][k] == ) continue; if(j*(a[i]-a[i-])+k > m) break; dp[now][j][j*(a[i]-a[i-])+k] += dp[now^][j][k],dp[now][j][j*(a[i]-a[i-])+k] %= mod;
dp[now][j+][j*(a[i]-a[i-])+k] += dp[now^][j][k],dp[now][j+][j*(a[i]-a[i-])+k] %= mod; if(j)dp[now][j-][k+j*(a[i]-a[i-])] += 1LL*j*dp[now^][j][k],dp[now][j-][k+j*(a[i]-a[i-])]%=mod; dp[now][j][k+j*(a[i]-a[i-])] += 1LL*j*dp[now^][j][k],dp[now][j][k+j*(a[i]-a[i-])] %= mod; }
}
}
LL ans = ;
for(int i = ; i <= m; ++i) {
ans = (ans + dp[now][][i])%mod;
}
printf("%lld\n",ans);
return ;
}
Codeforces 8VC Venture Cup 2016 - Elimination Round F. Group Projects 差分DP*****的更多相关文章
- 8VC Venture Cup 2016 - Elimination Round F. Group Projects dp
F. Group Projects 题目连接: http://www.codeforces.com/contest/626/problem/F Description There are n stud ...
- 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题
F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...
- codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre
C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...
- 8VC Venture Cup 2016 - Elimination Round
在家补补题 模拟 A - Robot Sequence #include <bits/stdc++.h> char str[202]; void move(int &x, in ...
- 8VC Venture Cup 2016 - Elimination Round G. Raffles 线段树
G. Raffles 题目连接: http://www.codeforces.com/contest/626/problem/G Description Johnny is at a carnival ...
- 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力
D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...
- 8VC Venture Cup 2016 - Elimination Round (C. Block Towers)
题目链接:http://codeforces.com/contest/626/problem/C 题意就是给你n个分别拿着2的倍数积木的小朋友和m个分别拿着3的倍数积木的小朋友,每个小朋友拿着积木的数 ...
- 8VC Venture Cup 2016 - Elimination Round E. Simple Skewness 暴力+二分
E. Simple Skewness 题目连接: http://www.codeforces.com/contest/626/problem/E Description Define the simp ...
- 8VC Venture Cup 2016 - Elimination Round C. Block Towers 二分
C. Block Towers 题目连接: http://www.codeforces.com/contest/626/problem/C Description Students in a clas ...
随机推荐
- POJ-3481 Double Queue,Treap树和set花式水过!
Double Queue 本打算学二叉树,单纯的二叉树感觉也就那几种遍历了, 无意中看到了这个题,然后就 ...
- 被忽视的控件UIToolbar
前言 UIToolbar以前也接触过,不过没有怎么用,久而久之就忘了他的存在,今天看别人源码的时候看见了,它怎么很方便,在排列一排视图的时候不需要我们算里面的坐标就可以轻松良好的把布局做出来 代码 U ...
- 【Luogu】P3391文艺平衡树(Splay)
题目链接 ddosvoid和自为风月马前卒教了我这道题 他们好强啊 如果我们要反转区间[l,r] 我们首先把l的前驱旋转到根节点 再把r的后继旋转到根节点的右儿子 那么此时根节点的右儿子的左儿子所代表 ...
- [kubernetes] 使用 Minikube 快速搭建本地 k8s 环境 (基于 Docker 驱动模式)
一.实验环境 操作系统:Centos 7 x86_64 Docker:1.12.6 二.部署 k8s 步骤 2.1 安装 kubectl cat <<EOF > /etc/yum. ...
- BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理
考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...
- Yii 之视图
控制器方法代码: public function actionIndex(){ $data = array( 'name' => 'zhangsan', 'age' => 12, 'add ...
- qu de hanzi 首字母
Function hztopy(hzpy As String) As StringDim hzstring As String, pystring As StringDim hzpysum As In ...
- Raft算法详解
一致性算法Raft详解 背景 熟悉或了解分布性系统的开发者都知道一致性算法的重要性,Paxos一致性算法从90年提出到现在已经有二十几年了,而Paxos流程太过于繁杂实现起来也比较复杂,可能也是以为过 ...
- 2018.11.7 PION 模拟赛
期望:100 + 80 + 75 = 255 实际:0 + 80 + 60 = 140 唉~一天比一天犯的错误智障,感觉noip要凉啊... 吓得我赶紧吃几颗药补补脑子. 奶一下大佬: lgj AK ...
- Go -- 性能优化
今日头条使用 Go 语言构建了大规模的微服务架构,本文结合 Go 语言特性着重讲解了并发,超时控制,性能等在构建微服务中的实践. 今日头条当前后端服务超过80%的流量是跑在 Go 构建的服务上.微服务 ...