spark 33G表
http://192.168.2.51:4041
http://hadoop1:8088/proxy/application_1512362707596_0006/executors/
Executors
Summary
RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Blacklisted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Active(3) | 54 | 1.4 GB / 1.2 GB | 700.1 MB | 2 | 50 | 0 | 22 | 72 | 6.5 min (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Dead(0) | 0 | 0.0 B / 0.0 B | 0.0 B | 0 | 0 | 0 | 0 | 0 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | 0 |
Total(3) | 54 | 1.4 GB / 1.2 GB | 700.1 MB | 2 | 50 | 0 | 22 | 72 | 6.5 min (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Executors
20
40
60
100
All
entries
Executor ID | Address | Status | RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Logs | Thread Dump |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
driver | 192.168.2.51:52491 | Active | 2 | 5.7 KB / 384.1 MB | 0.0 B | 0 | 0 | 0 | 0 | 0 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
2 | hadoop2:33018 | Active | 26 | 729.5 MB / 384.1 MB | 348.1 MB | 1 | 25 | 0 | 11 | 36 | 2.6 min (1 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
1 | hadoop1:53695 | Active | 26 | 700.1 MB / 384.1 MB | 352 MB | 1 | 25 | 0 | 11 | 36 | 3.9 min (0.9 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump |
from pyspark.sql import SparkSession my_spark = SparkSession \
.builder \
.appName("myAppYarn-10g") \
.master('yarn') \
.config("spark.mongodb.input.uri", "mongodb://pyspark_admin:admin123@192.168.2.50/recommendation.article") \
.config("spark.mongodb.output.uri", "mongodb://pyspark_admin:admin123@192.168.2.50/recommendation.article") \
.getOrCreate() db_rows = my_spark.read.format("com.mongodb.spark.sql.DefaultSource").load().collect()
Summary
RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Blacklisted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Active(3) | 31 | 748.4 MB / 1.2 GB | 75.7 MB | 2 | 27 | 0 | 0 | 27 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | 0 |
Dead(2) | 56 | 1.5 GB / 768.2 MB | 790.3 MB | 2 | 0 | 0 | 77 | 77 | 2.7 h (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Total(5) | 87 | 2.3 GB / 1.9 GB | 865.9 MB | 4 | 27 | 0 | 77 | 104 | 2.7 h (2 s) | 0.0 B | 0.0 B | 0.0 B | 0 |
Executors
20
40
60
100
All
entries
Executor ID | Address | Status | RDD Blocks | Storage Memory | Disk Used | Cores | Active Tasks | Failed Tasks | Complete Tasks | Total Tasks | Task Time (GC Time) | Input | Shuffle Read | Shuffle Write | Logs | Thread Dump |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
driver | 192.168.2.51:52491 | Active | 2 | 5.7 KB / 384.1 MB | 0.0 B | 0 | 0 | 0 | 0 | 0 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
4 | hadoop2:34394 | Active | 12 | 315.9 MB / 384.1 MB | 0.0 B | 1 | 11 | 0 | 0 | 11 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
3 | hadoop1:39620 | Active | 17 | 432.5 MB / 384.1 MB | 75.7 MB | 1 | 16 | 0 | 0 | 16 | 0 ms (0 ms) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
2 | hadoop2:33018 | Dead | 27 | 758.7 MB / 384.1 MB | 390.4 MB | 1 | 0 | 0 | 38 | 38 | 1.3 h (1 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump | |
1 | hadoop1:53695 | Dead | 29 | 775.9 MB / 384.1 MB | 399.9 MB | 1 | 0 | 0 | 39 | 39 | 1.4 h (0.9 s) | 0.0 B | 0.0 B | 0.0 B | Thread Dump |
Logs for container_1512362707596_0006_02_000002 |
|
Showing 4096 bytes. Click here for full log Manager: Dropping block taskresult_48 from memory |
spark 33G表的更多相关文章
- 基于spark实现表的join操作
1. 自连接 假设存在如下文件: [root@bluejoe0 ~]# cat categories.csv 1,生活用品,0 2,数码用品,1 3,手机,2 4,华为Mate7,3 每一行的格式为: ...
- 利用spark将表中数据拆分
i# coding:utf-8from pyspark.sql import SparkSession import os if __name__ == '__main__': os.environ[ ...
- spark使用Hive表操作
spark Hive表操作 之前很长一段时间是通过hiveServer操作Hive表的,一旦hiveServer宕掉就无法进行操作. 比如说一个修改表分区的操作 一.使用HiveServer的方式 v ...
- Databricks 第6篇:Spark SQL 维护数据库和表
Spark SQL 表的命名方式是db_name.table_name,只有数据库名称和数据表名称.如果没有指定db_name而直接引用table_name,实际上是引用default 数据库下的表. ...
- Spark SQL概念学习系列之如何使用 Spark SQL(六)
val sqlContext = new org.apache.spark.sql.SQLContext(sc) // 在这里引入 sqlContext 下所有的方法就可以直接用 sql 方法进行查询 ...
- spark基础知识介绍2
dataframe以RDD为基础的分布式数据集,与RDD的区别是,带有Schema元数据,即DF所表示的二维表数据集的每一列带有名称和类型,好处:精简代码:提升执行效率:减少数据读取; 如果不配置sp ...
- 新手福利:Apache Spark入门攻略
[编者按]时至今日,Spark已成为大数据领域最火的一个开源项目,具备高性能.易于使用等特性.然而作为一个年轻的开源项目,其使用上存在的挑战亦不可为不大,这里为大家分享SciSpike软件架构师Ash ...
- Spark入门之DataFrame/DataSet
目录 Part I. Gentle Overview of Big Data and Spark Overview 1.基本架构 2.基本概念 3.例子(可跳过) Spark工具箱 1.Dataset ...
- 6.3 使用Spark SQL读写数据库
Spark SQL可以支持Parquet.JSON.Hive等数据源,并且可以通过JDBC连接外部数据源 一.通过JDBC连接数据库 1.准备工作 ubuntu安装mysql教程 在Linux中启动M ...
随机推荐
- 如何部署 sources and javadoc jars
mvn org.apache.maven.plugins:maven-deploy-plugin:2.8.2:deploy-file -Durl=file:///home/me/m2-repo \ - ...
- BZOJ1924 [Sdoi2010]所驼门王的宝藏 【建图 + tarjan】
题目 输入格式 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti.Ti ...
- 军训分批(codevs 2751)
题目描述 Description 某学校即将开展军训.共有N个班级. 前M个优秀班级为了保持学习优势,必须和3位任课老师带的班级同一批. 问共有几批? 输入描述 Input Description N ...
- FOJ Problem 2271 X
Problem 2271 X Accept: 55 Submit: 200Time Limit: 1500 mSec Memory Limit : 32768 KB Problem Des ...
- Iptables入门教程
转自:http://drops.wooyun.org/tips/1424 linux的包过滤功能,即linux防火墙,它由netfilter 和 iptables 两个组件组成. netfilter ...
- hdu 4091 Zombie’s Treasure Chest 贪心+枚举
转自:http://blog.csdn.net/a601025382s/article/details/12308193 题意: 输入背包体积n,绿宝石体积s1,价值v1,蓝宝石体积s2,价值v2,宝 ...
- Python入门--8--现在需要先学习可视化--包:easygui
一.安装.了解easygui 下载地址:http://bbs.fishc.com/forum.php?mod=viewthread&tid=46069&extra=page%3D1%2 ...
- Entity Farmework领域建模方式 3种编程方式
一个业务领域由各个实体和各个相互关联且有格子的属性和行为的实体组成,每个实体都有其状态和验证规则需要维护,Entity Framework (后面简称EF)实体框架设计的出现是为了允许开发人员着重关注 ...
- oracle学习笔记(十四) 数据库对象 索引 视图 序列 同义词
数据库对象 用户模式:指数据库用户所创建和存储数据对象的统称.在访问其它用户模式的数据库对象时需加上用户模式. 如:scott.emp, scott.dept等. 数据库对象包括:表.视图.索引.序列 ...
- stm32的IIc总线--超声波测距