https://www.luogu.org/problemnew/show/P3327

不会做。

去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊。。。

公式是这样的:

$d(xy)=\sum_{i|x}\sum_{j|y}[(i,j)=1]$

证明:(转自:https://23613.blog.luogu.org/solution-p3327

考虑一个质因子p,设x中p的指数为a,y中p的指数为b(指质因数分解结果中指数),那么根据因数个数定理,这个质因子对式子左边的贡献(指使得答案乘上的值)是a+b+1;在式子右边,要么i中p的指数为0且j中p的指数为1~b,要么j中p的指数为0且i中p的指数为1~a,要么i和j中p的指数均为0(为了保证i,j互质),所以p的贡献是(b+a+1)。那么左右两边就相等了...

没办法了,背公式吧...找不到别的做法

答案要求的式子ans可以化为$\sum_{i=1}^n\sum_{j=1}^m[(i,j)=1]{\lfloor}\frac{n}{i}{\rfloor}{\lfloor}\frac{m}{j}{\rfloor}$

反演一下,得到$ans=\sum_{k=1}^m\mu(k)\sum_{i=1}^{{\lfloor}\frac{n}{k}{\rfloor}}\sum_{j=1}^{{\lfloor}\frac{m}{k}{\rfloor}}{\lfloor}\frac{n}{ik}{\rfloor}{\lfloor}\frac{m}{jk}{\rfloor}$(不妨设n<=m)

设$f(x)=\sum_{i=1}^x{\lfloor}\frac{x}{i}{\rfloor}$,这个显然可以n*sqrt预处理出来

$ans=\sum_{k=1}^m\mu(k)f({\lfloor}\frac{n}{k}{\rfloor})f({\lfloor}\frac{m}{k}{\rfloor})$

那么原式也可以简单的在一次询问sqrt的时间内求出

本以为就这样子A掉了,结果...T飞了

不管了。。O3开开A掉

网上找了一下,有一个方法卡常数:可以发现f函数是约数个数函数的前缀和,因此可以筛出约数个数然后直接前缀和,这样预处理就是O(n)的

 #pragma GCC optimize(3)
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll prime[],len,ff[],mu[];
bool nprime[];
ll ans,n,m;
int main()
{
ll i,j,k,T;
mu[]=;
for(i=;i<=;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=;i++) mu[i]+=mu[i-];
for(k=;k<=;k++)
{
for(i=;i<=k;i=j+)
{
j=min(k,k/(k/i));
ff[k]+=(j-i+)*(k/i);
}
}
//for(i=1;i<=10;i++) printf("%lld\n",ff[i]);
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
ans=;
for(i=;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(mu[j]-mu[i-])*ff[n/i]*ff[m/i];
}
printf("%lld\n",ans);
}
return ;
}

http://codeforces.com/contest/235/problem/E

是不是感觉非常像?

事实上,不仅式子像,结论也是一样的。。。好神奇啊

结论是:$d(xyz)=\sum_{i|x}\sum_{j|y}\sum_{k|z}[(i,j)=1][(j,k)=1][(i,k)=1]$

证明也是类似的;貌似可以推广到更高维(?没试过)

同样的,$ans=\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c[(i,j)=1][(j,k)=1][(i,k)=1]{\lfloor}\frac{a}{i}{\rfloor}{\lfloor}\frac{b}{j}{\rfloor}{\lfloor}\frac{c}{k}{\rfloor}$

耶,我又不会了,反演嘛式子推不清楚,乱搞嘛搞不出来

到网上找,发现一个技巧:如果只是要求XXX=1,用$\sum_{d|k}\mu(d)=[k=1]$去代比直接反演更方便

有了这样一个做法:

枚举i,搞出所有可能的j,k(指与i互质且在范围内),分别放入数组aj,ak

那么就需要从aj,ak内分别取一个元素x,y,如果(x,y)==1则可以计算贡献

也就是要计算$\sum_{j{\in}aj}\sum_{k{\in}ak}[(j,k)=1]{\lfloor}\frac{b}{j}{\rfloor}{\lfloor}\frac{c}{k}{\rfloor}=\sum_{j{\in}aj}\sum_{k{\in}ak}\sum_{d|(j,k)}\mu(d){\lfloor}\frac{b}{j}{\rfloor}{\lfloor}\frac{c}{k}{\rfloor}$

考虑对每一个d统计贡献,复杂度n^2*log

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
int prime[],len,mu[];
bool nprime[];
int a,b,c,mm;
unsigned ans,a1,n1,n2;
bool aj[],ak[];
int main()
{
int i,j,k,d;
mu[]=;
for(i=;i<=;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
scanf("%d%d%d",&a,&b,&c);
mm=max({a,b,c});
for(i=;i<=a;i++)
{
a1=;
for(j=;j<=b;j++)
aj[j]=(__gcd(i,j)==);
for(k=;k<=c;k++)
ak[k]=(__gcd(i,k)==);
for(d=;d<=mm;d++)
{
n1=n2=;
for(j=d;j<=b;j+=d)
n1+=aj[j]*(b/j);
for(k=d;k<=c;k+=d)
n2+=ak[k]*(c/k);
a1+=n1*n2*mu[d];
}
ans+=a1*(a/i);
}
printf("%u",ans%);
return ;
}

洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E的更多相关文章

  1. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  2. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  3. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  4. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...

  5. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  6. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  7. Luogu P3327 [SDOI2015]约数个数和

    又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...

  8. 并不对劲的bzoj3994:loj2185:p3327[SDOI2015]约数个数和

    题目大意 设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sum^n_{i=1}\sum^m_{j=1}d(i*j)$ 题解 假设\( ...

  9. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

随机推荐

  1. ditaa - 把ascii图形转成图片

    ditaa ditaa是一个把ascii图形转成图片的工具. 在查看zguide时看到这个文档是用gitdown生成的.zguide文档格式排版非常不错,以后要抽时间好好学习一下. 每章写一个txt文 ...

  2. hdoj 4932 Miaomiao&#39;s Geometry 【暴力枚举】

    题意:在一条直线上有n个点.取一长度差为x的区间. 规定点必须是区间的端点. 让你找出来最大的x 策略:rt 分析可得:两个相邻点之间的区间要么是两个点的差,要么就是两个点的差的一半,那我们就简单枚举 ...

  3. 关于 truncate table 的一点学习札记

    ---下面整理笔记来之 itpub 的各位前辈的语录.这里做了一个汇总.仅供学习. truncate table后,oracle会回收表和其表中所在的索引到initial 大小,也就是初始分配的seg ...

  4. HBase2.0新特性之In-Memory Compaction

    In-Memory Compaction是HBase2.0中的重要特性之一,通过在内存中引入LSM结构,减少多余数据,实现降低flush频率和减小写放大的效果.本文根据HBase2.0中相关代码以及社 ...

  5. MapReduce算法形式五:TOP—N

    案例五:TOP—N 这个问题比较常见,一般都用于求前几个或者后几个的问题,shuffle有一个默认的排序是正序的,但如果需要逆序的并且暂时还不知道如何重写shuffle的排序规则的时候就用以下方法就行 ...

  6. Node中的promise简说及入门

    Node的特色之一就是异步回调,可是回调过多,就会形成著名的回调金字塔. 直接上例子,我要读取1.txt里的内容,然后在这个内容上加上'test'并重新写入文件,如下代码所示: var fs = re ...

  7. React创建组件的三种方式比较和入门实例

    推荐文章: https://www.cnblogs.com/wonyun/p/5930333.html 创建组件的方式主要有: 1.function 方式 2.class App extends Re ...

  8. 分析PHP的include机制

    php在解析include指令时,会对包含的文件路径做如下判断: 如果是绝对路径,则直接包含,并结束. 如果是相对路径,则做如下判断: 相对路径以特殊符号开头,如 "./1.php" ...

  9. SpringBoot配置文件详解

    自定义属性与加载 com.dongk.selfproperty.title=wangdkcom.dongk.selfproperty.name=10000 然后通过@Value("${属性名 ...

  10. leelazero and google colab

    https://github.com/gcp/leela-zero/blob/master/COLAB.md 左侧菜单展开,可以查看细节