传送门

题意

给出n个数,任意个数任意数异或构成一个集合,询问第k大个数

分析

这题需要用到线性基,下面是一些资料

1.高斯消元&线性基&Matirx_Tree定理 笔记

2.关于线性基的一些理解

3.线性基

这题操作步骤如下:

1.高斯消元求n个数的线性基

2.对于每个询问,遍历a[],如果(1<<p)&k==1,那么ans^=a[cnt-p],注意这里a[]大的标号小

trick

1.如果cnt!=n,那么线性基中存在某些数异或和为0,导致k--,解释如下

原数集能否异或出0呢?我们无法通过线性基中的数判断,但可以根据线性基的大小判断。如果线性基的大小与原数集大小相同,那么无法异或出0,否则可以。这个可以通过线性基的插入证明,即如果异或出0则不插入,导致线性基的大小小于原数集的大小。

代码

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
int t,n,q,cnt;
ll x,zero;
ll a[10010]; void gauss()
{
cnt=zero=0;
for(int p=62;p>=0;--p)
{
int j=cnt+1;
while(j<=n&&(!(a[j]&(1LL<<p)))) j++;
if(j==n+1) continue;
cnt++;
swap(a[cnt],a[j]);
for(int i=1;i<=n;++i) if((i!=cnt)&&(a[i]&(1LL<<p))) a[i]^=a[cnt];
}
if(cnt!=n) zero=1;
}
ll query(ll x)
{
x-=zero;
ll ans=0;
if(!x) return 0;
if(x>=(1LL<<cnt)) return -1;
for(int p=cnt;p>=0;--p)if(x&(1LL<<p)) ans^=a[cnt-p];
return ans;
} int main()
{
scanf("%d",&t);
for(int k=1;k<=t;++k)
{
printf("Case #%d:\n",k);
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%lld",a+i);
gauss();
//for(int i=1;i<=cnt;++i) printf("%lld\n",a[i]);
for(scanf("%d",&q);q--;)
{
scanf("%lld",&x);
printf("%lld\n",query(x));
}
}
}

HDU3949:XOR(高斯消元)(线性基)的更多相关文章

  1. 【BZOJ-4269】再见Xor 高斯消元 + 线性基

    4269: 再见Xor Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 131  Solved: 81[Submit][Status][Discuss] ...

  2. BZOJ 4269: 再见Xor [高斯消元 线性基]

    4269: 再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 我太愚蠢了连数组开小了以及$2^{ ...

  3. 高斯消元 & 线性基【学习笔记】

    高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...

  4. HDU 3949:XOR(高斯消元+线性基)

    题目链接 题意 给出n个数,问这些数的某些数xor后第k小的是谁. 思路 高斯消元求线性基. 学习地址 把每个数都拆成二进制,然后进行高斯消元,如果这个数字这一位(列)有1,那么让其他数都去异或它,消 ...

  5. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  6. 洛谷P3389 高斯消元 / 高斯消元+线性基学习笔记

    高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还 ...

  7. BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...

  8. BZOJ 2844 高斯消元 线性基

    思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using ...

  9. HDU 3949 XOR(高斯消元搞基)

    HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...

  10. ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...

随机推荐

  1. 【Java源码】集合类-ArrayList

    一.类继承关系 public class ArrayList<E> extends AbstractList<E> implements List<E>, Rand ...

  2. Flatten Binary Tree to Linked List (DFS)

    Given a binary tree, flatten it to a linked list in-place. For example,Given 1 / \ 2 5 / \ \ 3 4 6 T ...

  3. redis连接数据库进行操作

    该项目需要的类目录 1.首先我们需要创建我们的实体类 2.放置我们的dao层,在里面写入方法 3.配置类Appconfig需要加入我们的JdbcTemplate方法,因为我们用的是spring,所以需 ...

  4. 报错: The type ByteInputStream is not accessible due to restriction on required library

    报错: Access restriction:The type JPEGCodec is not accessible due to restriction on required library C ...

  5. 定制 ArcEngine 要素编辑工具

    来自:http://blog.sina.com.cn/s/blog_4d780fc10101d2d5.html 先初步了解到大概用到的下面的接口和类: IEngineEditor IEngineEdi ...

  6. Android 自己定义UI文章汇总

    <Android ListView分类/分组效果 - 第一种实现方式> <Android ListView分类/分组效果 - 另外一种实现方式> <Android Lis ...

  7. WEKA简单介绍与资源汇总

    简单介绍 Weka是一个开源的数据挖掘软件,里面集成了很多经典的机器学习算法,在高校和科研机构中受到了广泛的应用. 具体的简单介绍和简单的使用请參考文档:<使用Weka进行数据挖掘>. 学 ...

  8. url优化|隐藏index.php

    隐藏index.php   一.codeigniter codeigniter和许多php框架一样,有个单一入口index.php,从url上看,显得很不友好.通过apache的rewirte,是可以 ...

  9. POJ训练计划2299_Ultra-QuickSort(线段树/单点更新)

    解题报告 题意: 求逆序数. 思路: 线段树离散化处理. #include <algorithm> #include <iostream> #include <cstri ...

  10. ubuntu下spring环境搭建

    一.安装JDK 下载官网:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 部署: ...