合并中间那块的时候没取max……WAWAWA

在线段树上维护一堆东西,分别是len区间长度,sm区间内1的个数,ll0区间从左开始最长连续0,ml0区间中间最长连续0,rl0区间从右开始最长连续0,ll1区间从左开始最长连续1,ml1区间中间最长连续1,rl1区间从右开始最长连续1(起始这六个东西可以存成三个数组,这样操作起来比较方便),lz标记区间赋值(没有赋值的时候为-1),f标记区间取反

仔细思考一下优先级,赋值>取反,所以lz标记不为-1时,f标记为0

sm,len的和并很好说,以下x表示0或1,llx的合并是左儿子的llx,如果左儿子全是x的话就加上右儿子的llx,rlx同理,mlx是max(左儿子的rlx+右儿子的llx,左儿子的mlx,右儿子的mlx)

注意细节不要手残打错!

#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,a[N];
struct xds
{
int l,r,len,sm,ll[2],ml[2],rl[2],f,lz;
}t[N<<2];
struct qwe
{
int l,m,r;
qwe(int L=0,int M=0,int R=0)
{
l=L,m=M,r=R;
}
};
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void ud(int ro)
{
t[ro].sm=t[ro<<1].sm+t[ro<<1|1].sm;
t[ro].ll[0]=t[ro<<1].ll[0]+((t[ro<<1].sm==0)?t[ro<<1|1].ll[0]:0);
t[ro].ml[0]=max(t[ro<<1].rl[0]+t[ro<<1|1].ll[0],max(t[ro<<1].ml[0],t[ro<<1|1].ml[0]));
t[ro].rl[0]=t[ro<<1|1].rl[0]+((t[ro<<1|1].sm==0)?t[ro<<1].rl[0]:0);
t[ro].ll[1]=t[ro<<1].ll[1]+((t[ro<<1].sm==t[ro<<1].len)?t[ro<<1|1].ll[1]:0);
t[ro].ml[1]=max(t[ro<<1].rl[1]+t[ro<<1|1].ll[1],max(t[ro<<1].ml[1],t[ro<<1|1].ml[1]));
t[ro].rl[1]=t[ro<<1|1].rl[1]+((t[ro<<1|1].sm==t[ro<<1|1].len)?t[ro<<1].rl[1]:0);
}
void pd(int ro)
{
if(t[ro].lz!=-1)
{
t[ro<<1].lz=t[ro].lz,t[ro<<1].f=0;
t[ro<<1].sm=t[ro].lz?t[ro<<1].len:0;
t[ro<<1].ll[t[ro].lz]=t[ro<<1].ml[t[ro].lz]=t[ro<<1].rl[t[ro].lz]=t[ro<<1].len;
t[ro<<1].ll[t[ro].lz^1]=t[ro<<1].ml[t[ro].lz^1]=t[ro<<1].rl[t[ro].lz^1]=0;
t[ro<<1|1].lz=t[ro].lz,t[ro<<1|1].f=0;
t[ro<<1|1].sm=t[ro].lz?t[ro<<1|1].len:0;
t[ro<<1|1].ll[t[ro].lz]=t[ro<<1|1].ml[t[ro].lz]=t[ro<<1|1].rl[t[ro].lz]=t[ro<<1|1].len;
t[ro<<1|1].ll[t[ro].lz^1]=t[ro<<1|1].ml[t[ro].lz^1]=t[ro<<1|1].rl[t[ro].lz^1]=0;
t[ro].lz=-1;
}
if(t[ro].f)
{
t[ro<<1].f^=1;
swap(t[ro<<1].ll[0],t[ro<<1].ll[1]);
swap(t[ro<<1].ml[0],t[ro<<1].ml[1]);
swap(t[ro<<1].rl[0],t[ro<<1].rl[1]);
t[ro<<1].sm=t[ro<<1].len-t[ro<<1].sm;
if(t[ro<<1].lz!=-1)
t[ro<<1].lz^=1,t[ro<<1].f=0;
t[ro<<1|1].f^=1;
swap(t[ro<<1|1].ll[0],t[ro<<1|1].ll[1]);
swap(t[ro<<1|1].ml[0],t[ro<<1|1].ml[1]);
swap(t[ro<<1|1].rl[0],t[ro<<1|1].rl[1]);
t[ro<<1|1].sm=t[ro<<1|1].len-t[ro<<1|1].sm;
if(t[ro<<1|1].lz!=-1)
t[ro<<1|1].lz^=1,t[ro<<1|1].f=0;
t[ro].f=0;
}
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r,t[ro].len=r-l+1,t[ro].lz=-1;
if(l==r)
{
t[ro].sm=a[l];
t[ro].ll[a[l]]=t[ro].ml[a[l]]=t[ro].rl[a[l]]=1;
return;
}
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
ud(ro);
}
void update(int ro,int l,int r,int v)
{
if(t[ro].l==l&&t[ro].r==r)
{
t[ro].lz=v,t[ro].f=0;
t[ro].sm=v?t[ro].len:0;
t[ro].ll[v]=t[ro].ml[v]=t[ro].rl[v]=t[ro].len;
t[ro].ll[v^1]=t[ro].ml[v^1]=t[ro].rl[v^1]=0;
return;
}
pd(ro);
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
update(ro<<1,l,r,v);
else if(l>mid)
update(ro<<1|1,l,r,v);
else
update(ro<<1,l,mid,v),update(ro<<1|1,mid+1,r,v);
ud(ro);
}
void fan(int ro,int l,int r)
{
if(t[ro].l==l&&t[ro].r==r)
{
t[ro].f^=1;
swap(t[ro].ll[0],t[ro].ll[1]);
swap(t[ro].ml[0],t[ro].ml[1]);
swap(t[ro].rl[0],t[ro].rl[1]);
t[ro].sm=t[ro].len-t[ro].sm;
if(t[ro].lz!=-1)
t[ro].lz^=1,t[ro].f=0;
return;
}
pd(ro);
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
fan(ro<<1,l,r);
else if(l>mid)
fan(ro<<1|1,l,r);
else
fan(ro<<1,l,mid),fan(ro<<1|1,mid+1,r);
ud(ro);
}
int ques(int ro,int l,int r)
{
if(t[ro].l==l&&t[ro].r==r)
return t[ro].sm;
pd(ro);
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return ques(ro<<1,l,r);
else if(l>mid)
return ques(ro<<1|1,l,r);
else
return ques(ro<<1,l,mid)+ques(ro<<1|1,mid+1,r);
}
qwe lian(int ro,int l,int r)
{
if(t[ro].l==l&&t[ro].r==r)
return qwe(t[ro].ll[1],t[ro].ml[1],t[ro].rl[1]);
pd(ro);
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return lian(ro<<1,l,r);
else if(l>mid)
return lian(ro<<1|1,l,r);
else
{
int len1=mid-l+1,len2=r-mid,ll,ml,rl;
qwe a=lian(ro<<1,l,mid),b=lian(ro<<1|1,mid+1,r);
ll=a.l+((a.l==len1)?b.l:0);
ml=max(a.r+b.l,max(a.m,b.m));
rl=b.r+((b.r==len2)?a.r:0);
return qwe(ll,ml,rl);
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i]=read();
build(1,1,n);
while(m--)
{
int o=read(),l=read()+1,r=read()+1;
if(o==0)
update(1,l,r,0);
else if(o==1)
update(1,l,r,1);
else if(o==2)
fan(1,l,r);
else if(o==3)
printf("%d\n",ques(1,l,r));
else
printf("%d\n",lian(1,l,r).m);
}
return 0;
}

bzoj 1858: [Scoi2010]序列操作【线段树】的更多相关文章

  1. BZOJ 1858: [Scoi2010]序列操作( 线段树 )

    略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...

  2. (WAWAWAWAWAWA) BZOJ 1858: [Scoi2010]序列操作

    二次联通门 : BZOJ 1858: [Scoi2010]序列操作 /* BZOJ 1858: [Scoi2010]序列操作 已经... 没有什么好怕的的了... 16K的代码... 调个MMP啊.. ...

  3. bzoj 1858: [Scoi2010]序列操作

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MB 线段树,对于每个区间需要分别维护左右和中间的1和0连续个数,并在op=4时特殊 ...

  4. bzoj1858[Scoi2010]序列操作 线段树

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 3079  Solved: 1475[Submit][Statu ...

  5. 【bzoj1858】[Scoi2010]序列操作 线段树区间合并

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  6. Luogu P2572 [SCOI2010]序列操作 线段树。。

    咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...

  7. bzoj1858 [Scoi2010]序列操作——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1858 线段树...调了一个上午...(后面带 // 的都是改出来的) lazy 标记的下放好 ...

  8. bzoj 1858: [Scoi2010]序列操作 || 洛谷 P2572

    记一下:线段树占空间是$2^{ceil(log2(n))+1}$ 这个就是一个线段树区间操作题,各种标记的设置.转移都很明确,只要熟悉这类题应该说是没有什么难度的. 由于对某区间set之后该区间原先待 ...

  9. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  10. [SCOI2010]序列操作 线段树

    ---题面--- 题解: 在考场上打的这道题,出人意料的很快就打完了?! 直接用线段树,维护几个东西: 1,lazy标记 : 表示区间赋值 2,mark标记:表示区间翻转 3,l1:前缀最长连续的1的 ...

随机推荐

  1. centos7 网络设置

    1.显示所有连接的网络接口 ip link show 2.激活或禁止网络接口 sudo ip link set up/down {dev} 3.将一个或多个IPv4地址分配给网络接口$ sudo ip ...

  2. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  3. POJ 1860【求解是否存在权值为正的环 屌丝做的第一道权值需要计算的题 想喊一声SPFA万岁】

    题意: 有n种钱币,m个钱币兑换点,小明一开始有第n种钱币数量为w. 每个兑换点可以将两种不同的钱币相互兑换,但是兑换前要先收取一定的费用,然后按照比例兑换. 问小明是否可以经过一系列的兑换之后能够将 ...

  4. 通过socket过去本地ip,port和远端ip,port

    struct sockaddr addr;struct sockaddr_in* addr_v4;int addr_len = sizeof(addr); //获取local ip and portZ ...

  5. javascript创建对象总结(javascript高级程序设计)

    1.工厂模式 这样的模式抽象创建详细对象的过程.用函数封装特定的接口来创建类. function createStudent(name) { var o = new Object(); o.name ...

  6. &quot;What&#39;s New&quot; WebPart in SharePoint

    "What's New" WebPart in SharePoint 项目描写叙述         这是一个自己定义WebPart,能够显示一个列表,这个列表项目是在SharePo ...

  7. Android中AsyncTask使用具体解释

    在Android中我们能够通过Thread+Handler实现多线程通信.一种经典的使用场景是:在新线程中进行耗时操作.当任务完毕后通过Handler向主线程发送Message.这样主线程的Handl ...

  8. HTC 328T 如何恢复出厂设置

    设置-存储-恢复出厂设置(在存储的最下面,往下拉)

  9. 分享codeigniter框架,在zend studio 环境下的代码提示

    一.到github下载相关文件 https://github.com/Stunt/Codeigniter-autocomplete 二.把文件放到application/config中 代码提示就出来 ...

  10. 重载和重写在jvm运行中的区别(一)

    1.重载(overload)方法 对重载方法的调用主要看静态类型,静态类型是什么类型,就调用什么类型的参数方法. 2.重写(override)方法 对重写方法的调用主要看实际类型.实际类型如果实现了该 ...