BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数
BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数
Description
丢番图是亚历山大时期埃及著名的数学家。他是最早研究整数系数不定方程的数学家之一。
为了纪念他,这些方程一般被称作丢番图方程。最著名的丢番图方程之一是x^N+y^n=z^N。费马
提出,对于N>2,x,y,z没有正整数解。这被称为“费马大定理”,它的证明直到最近才被安德
鲁·怀尔斯(AndrewWiles)证明。
考虑如下的丢番图方程:
1/x+1/y=1/n(x,y,n属于N+) (1)
小G对下面这个问题十分感兴趣:对于一个给定的正整数n,有多少种本质不同的解满足方
程(1)?例如n=4,有三种本质不同(x≤y)的解:
1/5+1/20=1/4
1/6+1/12=1/4
1/8+1/8=1/4
显然,对于更大的n,没有意义去列举所有本质不同的解。你能否帮助小G快速地求出对于
给定n,满足方程(1)的本质不同的解的个数?
Input
一行,仅一个整数n(1<=N<=10^14)
Output
一行,输出对于给定整数n,满足方程(1)的本质不同的解的个数。
Sample Input
Sample Output
$xn+yn=xy$
$(x-n)*(y-n)=n^{2}$
于是转化为了求$n$的约数个数。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stdlib.h>
#include <math.h>
using namespace std;
typedef long long ll;
int a[]={2,3,5,7,11,13,17,19,23};
ll ch(ll a,ll b,ll mod) {
ll d=(ll)floor(1.0*a/mod*b+0.5),re=a*b-d*mod; return re<0?re+mod:re;
}
ll random(ll l,ll r) {
return ((rand()*(1ll<<45))+(rand()<<30)+(rand()<<15)+(rand()))%(r-l+1)+l;
}
ll qp(ll x,ll y,ll mod) {
ll re=1;
for(;y;y>>=1ll,x=ch(x,x,mod)) if(y&1) re=ch(re,x,mod); return re;
}
ll Abs(ll x) {return x>0?x:-x;}
ll gcd(ll x,ll y) {return y?gcd(y,x%y):x;}
ll yy[23333];
bool check(ll a,ll n,ll r,ll s) {
ll x=qp(a,r,n),y=x;
int i;
for(i=1;i<=s;i++,y=x) {
x=ch(x,x,n);
if(x==1&&y!=1&&y!=n-1) return 0;
}
return x==1;
}
bool MR(ll n) {
if(n<=1) return 0;
ll r=n-1,s=0;
int i;
for(;!(r&1);r>>=1ll,s++);
for(i=0;i<3;i++) {
if(a[i]==n) return 1;
if(!check(a[i],n,r,s)) return 0;
}
return 1;
}
ll PR(ll n,ll c) {
ll x=random(0,n-1),y=x,p;
for(p=1;p==1;) {
x=(ch(x,x,n)+c)%n;
y=(ch(y,y,n)+c)%n;
y=(ch(y,y,n)+c)%n;
p=gcd(Abs(x-y),n);
}
return p;
}
void solve(ll n) {
if(n<=1) return ;
if(MR(n)) {
yy[++yy[0]]=n; return ;
}
ll tmp=n;
while(tmp==n) tmp=PR(n,random(0,n-1));
solve(tmp); solve(n/tmp);
}
int main() {
ll n;
scanf("%lld",&n);
while(n%2==0) {
yy[++yy[0]]=2; n/=2;
}
solve(n);
sort(yy+1,yy+yy[0]+1);
ll lst=-1;
int i,now=0;
ll ans=1;
for(i=1;i<=yy[0];i++) {
if(lst!=yy[i]) {
ans=ans*(2*now+1);
now=0; lst=yy[i];
}
now++;
// printf("%lld\n",yy[i]);
}
ans=ans*(2*now+1);
printf("%lld\n",ans+1>>1);
}
BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数的更多相关文章
- bzoj 4459: [Jsoi2013]丢番图 -- 数学
4459: [Jsoi2013]丢番图 Time Limit: 10 Sec Memory Limit: 64 MB Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系 ...
- bzoj4459[Jsoi2013]丢番图
bzoj4459[Jsoi2013]丢番图 题意: 丢番图方程:1/x+1/y=1/n(x,y,n∈N+) ,给定n,求出关于n的丢番图方程有多少组解.n≤10^14. 题解: 通分得yn+xn=xy ...
- 【bzoj4459】[Jsoi2013]丢番图 分解质因数
题目描述 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一.为了纪念他,这些方程一般被称作丢番图方程.最著名的丢番图方程之一是x^N+y^n=z^N.费马提出,对于N&g ...
- BZOJ 4459: [Jsoi2013]丢番图 数学推导
之前绝对做过几乎一模一样的题,现在做竟然忘了. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) f ...
- [luogu5253]丢番图【数学】
传送门 [传送门] 题目大意 求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n}\)有多少组不同的解. 分析 将式子转化成\((n-x)(n-y)=n^2\)的形式. 那么很 ...
- 【bzoj4459】JSOI2013丢番图
某JSOI夏令营出题人啊,naive! 你还是得学习个,搬这种原题不得被我一眼看穿? 求个n^2的约数除以二,向上取整. #include<bits/stdc++.h> using nam ...
- Project Euler 110:Diophantine reciprocals II 丢番图倒数II
Diophantine reciprocals II In the following equation x, y, and n are positive integers. For n = 4 th ...
- Project Euler 108:Diophantine reciprocals I 丢番图倒数I
Diophantine reciprocals I In the following equation x, y, and n are positive integers. For n = 4 the ...
- BZOJ_2467_[中山市选2010]生成树_数学
BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...
随机推荐
- Food Delivery (区间DP)
When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha ...
- oracle sqlplus 导出csv文件
et colsep , set feedback off set heading off set trimout on spool D:\DBoracle\lfc.csv select '" ...
- Codeforces Round #277 (Div. 2 Only)
A:SwapSort http://codeforces.com/problemset/problem/489/A 题目大意:将一个序列排序,可以交换任意两个数字,但要求交换的次数不超过n,输出任意一 ...
- VS Code 列编辑功能说明
新版本v1.13.1或者附近的版本中的列编辑功能已经调整. 一.多光标插入功能 Alt+鼠标左键,添加多光标输入 二.自由多行选择 Alt键+鼠标左键拖动选择各行的部分内容 三.列选择 Shift+A ...
- ubuntu,CentOS永久修改主机名
1.查看主机名 在Ubuntu系统中,快速查看主机名有多种方法: 其一,打开一个GNOME终端窗口,在命令提示符中可以看到主机名,主机名通常位于“@”符号后: 其二,在终端窗口中输入命令:hostna ...
- mybatis连接mysql
配置web.xml 1. <context-param> 参考文章 <context-param> <param-name>contextConfigLoca ...
- Method, apparatus and system for acquiring a global promotion facility utilizing a data-less transaction
A data processing system includes a global promotion facility and a plurality of processors coupled ...
- 分享一下然让显卡满血复活的小技巧(GTX)
分享一下然让显卡满血复活的小技巧 笔者在玩大型游戏卡顿15fps下载如下操作 GTX950玩大型游戏都不会卡帧率稳定在30fps 下载GeForce Experience下载更新最新驱动 下载如下程序 ...
- win10 笔记本猎豹WiFi无法打开
网卡驱动太新了,先把网卡驱动卸载,重新安装一个就可以,用驱动精灵,17.15.0.5版本就可以
- c++多线程编程:常见面试题
题目:子线程循环 10 次,接着主线程循环 100 次,接着又回到子线程循环 10 次,接着再回到主线程又循环 100 次,如此循环50次,试写出代码 子线程与主线程必有一个满足条件(flag == ...