Subsetting

There are a number of operators that can be used to extract subsets of R objects.

[ always returns an object of the same class as the original; can be used to select more than one

element (there is one exception)

[[ is used to extract elements of a list or a data frame; it can only be used to extract a single

element and the class of the returned object will not necessarily be a list or data frame

$ is used to extract elements of a list or data frame by name; semantics are similar to that of [[.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1]

[1] "a"

> x[2]

[1] "b"

> x[1:4]

[1] "a" "b" "c" "c"

> x[x > "a"]

[1] "b" "c" "c" "d"

> u <- x > "a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b" "c" "c" "d"

Subsetting Lists

> x <- list(foo = 1:4, bar = 0.6)

> x[1]

$foo

[1] 1 2 3 4

> x[[1]]

[1] 1 2 3 4

> x$bar

[1] 0.6

> x[["bar"]]

[1] 0.6

> x["bar"]

$bar

[1] 0.6

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$foo

[1] 1 2 3 4

$baz

[1] "hello"

The [[ operator can be used with computed indices; $ can only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

> x[[name]] ## computed index for ‘foo’

[1] 1 2 3 4

> x$name ## element ‘name’ doesn’t exist!

NULL

> x$foo

[1] 1 2 3 4 ## element ‘foo’ does exist

Subsetting Nested Elements of a List

The [[ can take an integer sequence

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

> x[[c(1, 3)]]

[1] 14

> x[[1]][[3]]

[1] 14

> x[[c(2, 1)]]

[1] 3.14

Subsetting a Matrix

Matrices can be subsetted in the usual way with (i,j) type indices.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

Indices can also be missing.

> x[1, ]

[1] 1 3 5

> x[, 2]

[1] 3 4

By default, when a single element of a matrix is retrieved, it is returned as a vector of length 1 rather than a 1 × 1 matrix. This behavior can be turned off by setting drop = FALSE.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[1, 2, drop = FALSE]

 [,1]

[1,] 3

Similarly, subsetting a single column or a single row will give you a vector, not a matrix (by default).

> x <- matrix(1:6, 2, 3)

> x[1, ]

[1] 1 3 5

> x[1, , drop = FALSE]

 [,1] [,2] [,3]

[1,] 1 3 5

Partial Matching

Partial matching of names is allowed with [[ and $.

> x <- list(aardvark = 1:5)

> x$a

[1] 1 2 3 4 5

> x[["a"]]

NULL

> x[["a", exact = FALSE]]

[1] 1 2 3 4 5

Removing NA Values

A common task is to remove missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> x[!bad]

[1] 1 2 4 5

What if there are multiple things and you want to take the subset with no missing values?

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

> x[good]

[1] 1 2 4 5

> y[good]

[1] "a" "b" "d" "f"

 

> airquality[1:6, ]

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

> good <- complete.cases(airquality)

> airquality[good, ][1:6, ]

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

R Programming week1-Subsetting的更多相关文章

  1. Coursera系列-R Programming第二周

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html  --- 好久没发博客 且容我大吼一句 终于做完这周R Progra ...

  2. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  3. 让reddit/r/programming炸锅的一个帖子,还是挺有意思的

    这是原帖 http://www.reddit.com/r/programming/comments/358tnp/five_programming_problems_every_software_en ...

  4. [R] [Johns Hopkins] R Programming 作業 Week 2 - Air Pollution

    Introduction For this first programming assignment you will write three functions that are meant to ...

  5. R Programming week 3-Loop functions

    Looping on the Command Line Writing for, while loops is useful when programming but not particularly ...

  6. R programming, In ks.test(x, y) : p-value will be approximate in the presence of ties

    Warning message: In ks.test(x, y) : p-value will be approximate in the presence of ties   The warnin ...

  7. [R] [Johns Hopkins] R Programming -- week 3

    library(datasets) head(airquality) #按月分組 s <- split(airquality, airquality$Month) str(s) summary( ...

  8. [R] [Johns Hopkins] R Programming -- week 4

    #Generating normal distribution (Pseudo) random number x<-rnorm(10) x x2<-rnorm(10,2,1) x2 set ...

  9. R Programming week 3-Debugging

    Something’s Wrong! Indications that something’s not right message: A generic notification/diagnostic ...

随机推荐

  1. 【iOS系列】-UITableView的使用

    UITableView的使用: 第一:数据展示条件 1,UITableView的所有数据都是由数据源(dataSource)提供,所以想在UITableView展示数据,必须设置UITableview ...

  2. ArrayAdapter requires the resource ID to be a TextView

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABDUAAADFCAIAAADLz168AAAgAElEQVR4nO2d368kxZXnQ37dn9qdWa

  3. 基于Servlet API 如何实现转向时不再地址栏中显示转向后的地址?

    A:redirect() B:sendRedirect()  C:forward()  D:transform()

  4. nginx与apache 对比 apache是同步多进程模型,一个连接对应一个进程;nginx是异步的,多个连接(万级别)可以对应一个进程

    nginx与apache详细性能对比 http://m.blog.csdn.net/lengzijian/article/details/7699444 http://www.cnblogs.com/ ...

  5. 借助ltp 逐步程序化实现规则库 文本生成引擎基于规则库和业务词库 去生成文本

    [哪个地方做什么的哪家靠谱?地名词库行业.业务词库]苏州做网络推广的公司哪家靠谱?苏州镭射机维修哪家最专业?昆山做账的公司哪家比较好广州称重灌装机生产厂家哪家口碑比较好 [含有专家知识]郑州律师哪个好 ...

  6. os 2大功能

    支撑功能 中断管理 时钟管理 原语操作  primitive 资源管理功能 进程管理 存储器管理 设备管理

  7. YTU 1007: Redraiment猜想

    1007: Redraiment猜想 时间限制: 1000 Sec  内存限制: 10 MB 提交: 83  解决: 23 题目描述 redraiment在家极度无聊,于是找了张纸开始统计素数的个数. ...

  8. YTU 1006: Hero In Maze

    1006: Hero In Maze 时间限制: 1000 Sec  内存限制: 64 MB 提交: 72  解决: 22 题目描述 500年前,Jesse是我国最卓越的剑客.他英俊潇洒,而且机智过人 ...

  9. 创建cordova项目

    PhoneGap是一套能让你使用HTML5轻松调用本地API接口和发布应用到商店的应用开发平台.官方说有低成本,低开发周期,轻量化等优点,这些咱暂时也没法证明,略过不表.但是有一条跨平台,却是很明显的 ...

  10. 揭开自然拼读法(Phonics)的神秘面纱

    揭开自然拼读法(Phonics)的神秘面纱 自然拼读法  (Phonics),是指看到一个单词,就可以根据英文字母在单词里的发音规律把这个单词读出来的一种方法.即从“字母发音-字母组合发音-单词-简单 ...