A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table: 

The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums.

Each domino can be turned by 180 degrees keeping its face always upwards.

What is the smallest number of turns needed to minimise the gap between the top line and the bottom line?

For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1. 
Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

Input

The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table.

Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one.

Output

Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

Sample Input

4
6 1
1 5
1 3
1 2

Sample Output

1

题目大意:给成一组多米诺牌,每个多米诺牌由上面和下面两组数组成,现要求可以翻动
颠倒上下,使得多米诺上边的点数和减去下边的点数和的绝对值最小。 题解:dp,背包,翻转或者不翻转,然后f[i][j],j表示反转后差为j的最小次数。
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
#define inf 1000000007 using namespace std; int n;
int a[][];
int f[][]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i][],&a[i][]);
memset(f,,sizeof(f));
f[][]=;
for(int i=;i<n;i++)
for(int j=;j<=;j++)
if(f[i][j]<inf)
{
int x1=a[i+][],x2=a[i+][];
f[i+][j+x1-x2]=min(f[i][j],f[i+][j+x1-x2]);
f[i+][j+x2-x1]=min(f[i][j]+,f[i+][j+x2-x1]);
}
for(int i=;i<=;i++)
if(f[n][+i]<inf||f[n][-i]<inf)
{
printf("%d\n",min(f[n][+i],f[n][-i]));
break;
}
}

												

poj1717 Dominoes (背包)的更多相关文章

  1. POJ1717 Dominoes[背包DP]

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6731   Accepted: 2234 Descript ...

  2. 【USACO 3.1】Stamps (完全背包)

    题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...

  3. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  4. HDU2159 二维完全背包

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. CF2.D 并查集+背包

    D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...

  6. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  7. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  8. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  9. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

随机推荐

  1. Win7下vc++6.0打开项目出现问题的解决方案

    Win7下vc++6.0打开项目出现Microsoft(R) Developer Studio以及Unable to register this add-in because its DLLRegis ...

  2. sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) Cannot add a NOT NULL column with default value NULL [SQL: u'ALTER TABLE address_scopes ADD COLUMN ip_version INTEGER NOT NULL']

    root@hett-virtual-machine:~# su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neu ...

  3. Hermite 矩阵及其特征刻画

    将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次 ...

  4. 电脑上文件的后缀名被隐藏,把一个文本文件改成.bat时,默认打开的还是文本。

    1.打开文件夹,选择组织,点击“文件夹和搜索选项”,如图: 2.选择“查看”,找到“隐藏已知文件类型的扩展名”,不要勾选这一项,如图: 3.点击“确定”或者“应用”

  5. Python基础篇 -- 字典

    字典 dict. 以 {} 表示, 每一项用逗号隔开, 内部元素用 key: value的形式来保存数据 例子: dict.{"JJ":"林俊杰"," ...

  6. EXTJS中文乱码

    在<head>中加入 <meta http-equiv="Content-Type" content="text/html; charset=GB231 ...

  7. shell脚本,按空格开始60秒的倒计时。

    [root@localhost wyb]# cat space.sh #!/bin/bash #按空格开始60秒的倒计时#-n表示接受字符的数量,1表示只接受一个字符  a() { - ` do ec ...

  8. iOS UIView中的坐标转换convertPoint --- iOS开发系列 ---项目中成长的知识六

    如果你的UITableViewCell里面有一个Button需要响应事件,你会怎么做? 在Controller中使用 button父类的父类?   例如:UITableViewCell *parent ...

  9. Linux下基于LVM调整分区容量大小的方法

    Linux下调整分区容量大小的方法(适用于centos6-7) 说明:以下方法均使用centos6.9和centos7.4进行测试. Centos6分区容量调整方法 1.web分区空间不足,新添加一块 ...

  10. 双线性差值(由于分析sift源码 )

    双线性插值 双线性插值,顾名思义就是两个方向的线性插值加起来.所以只要了解什么是线性插值,分别在x轴和y轴都做一遍,就是双线性插值了. 线性插值的概念也非常简单粗暴,就是两个点A,B,要在AB中间插入 ...