【bzoj4826】[Hnoi2017]影魔 单调栈+可持久化线段树
题目描述
输入
输出
样例输入
10 5 2 3
7 9 5 1 3 10 6 8 2 4
1 7
1 9
1 3
5 9
1 5
样例输出
30
39
4
13
16
题解
单调栈+可持久化线段树
先使用单调栈求出i左边第一个比i大的位置l[i],和右边第一个比i大的位置r[i]。
考虑i对答案的贡献,当且仅当i作为区间[x+1,y-1]的最大值时,i才对点对(x,y)有贡献。
根据题意,第一种情况i产生贡献的点对是(l[i] , r[i]),
第二种情况i产生贡献的点对是(l[i] , i+1~r[i]-1)和(r[i] , l[i]+1~i-1)。
同时还要加上特殊情况(i , i+1)。
问题便转化为在二维平面上,有一些线段被涂色(点算作特殊的包含点数为1的线段),问一个矩形区域内的涂色的点的个数。
可以使用扫描线来解决,然而蒟蒻不会,所以写了主席树。
发现点对的第一个点都是固定的,所以我们可以以第一个点为根建立可持久化线段树,并在对应的可持久化线段树上进行区间更新。
然而可持久化线段树的pushdown比较复杂,所以我使用了标记永久化的方法来完成。
最后查询的矩形是(a,a)与(b,b)之间的部分,查询[a,b]内root[b]与root[a-1]的差即为答案。
#include <cstdio>
#include <algorithm>
#define N 200010
#define lson l , mid , ls[x] , ls[y]
#define rson mid + 1 , r , rs[x] , rs[y]
using namespace std;
typedef long long ll;
struct data
{
int x , l , r;
ll p;
data() {}
data(int x0 , int l0 , int r0 , ll p0) {x = x0 , l = l0 , r = r0 , p = p0;}
}v[N << 2];
int a[N] , lp[N] , rp[N] , sta[N] , top , cnt , root[N] , ls[N << 6] , rs[N << 6] , tot;
ll sum[N << 6] , add[N << 6];
bool cmp(data a , data b)
{
return a.x < b.x;
}
void pushup(int x)
{
sum[x] = sum[ls[x]] + sum[rs[x]];
}
void insert(int b , int e , ll a , int l , int r , int x , int &y)
{
y = ++tot , ls[y] = ls[x] , rs[y] = rs[x] , add[y] = add[x] , sum[y] = sum[x] + a * (e - b + 1);
if(b == l && r == e)
{
add[y] += a;
return;
}
int mid = (l + r) >> 1;
if(e <= mid) insert(b , e , a , lson);
else if(b > mid) insert(b , e , a , rson);
else insert(b , mid , a , lson) , insert(mid + 1 , e , a , rson);
}
ll query(int b , int e , int l , int r , int x , int y)
{
if(b <= l && r <= e) return sum[y] - sum[x];
int mid = (l + r) >> 1;
ll ans = (add[y] - add[x]) * (e - b + 1);
if(e <= mid) return ans + query(b , e , lson);
else if(b > mid) return ans + query(b , e , rson);
else return ans + query(b , mid , lson) + query(mid + 1 , e , rson);
}
int main()
{
int n , m , i , j , x , y;
ll p1 , p2;
scanf("%d%d%lld%lld" , &n , &m , &p1 , &p2);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
a[0] = a[n + 1] = 1 << 30 , top = 1;
for(i = 1 ; i <= n ; i ++ )
{
while(a[sta[top]] < a[i]) top -- ;
lp[i] = sta[top] , sta[++top] = i;
}
top = 1 , sta[1] = n + 1;
for(i = n ; i >= 1 ; i -- )
{
while(a[sta[top]] < a[i]) top -- ;
rp[i] = sta[top] , sta[++top] = i;
}
for(i = 1 ; i <= n ; i ++ )
{
if(lp[i] != 0 && rp[i] != n + 1) v[++cnt] = data(lp[i] , rp[i] , rp[i] , p1);
if(i < n) v[++cnt] = data(i , i + 1 , i + 1 , p1);
if(lp[i] != 0 && rp[i] - i > 1) v[++cnt] = data(lp[i] , i + 1 , rp[i] - 1 , p2);
if(rp[i] != n + 1 && i - lp[i] > 1) v[++cnt] = data(rp[i] , lp[i] + 1 , i - 1 , p2);
}
sort(v + 1 , v + cnt + 1 , cmp);
for(i = j = 1 ; i <= n ; i ++ )
{
root[i] = root[i - 1];
while(j <= cnt && v[j].x == i)
insert(v[j].l , v[j].r , v[j].p , 1 , n , root[i] , root[i]) , j ++ ;
}
while(m -- )
{
scanf("%d%d" , &x , &y);
printf("%lld\n" , query(x , y , 1 , n , root[x - 1] , root[y]));
}
return 0;
}
【bzoj4826】[Hnoi2017]影魔 单调栈+可持久化线段树的更多相关文章
- BZOJ 4826: [Hnoi2017]影魔 单调栈+可持久化线段树
Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样 的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个 ...
- 【bzoj3956】Count 单调栈+可持久化线段树
题目描述 输入 输出 样例输入 3 2 0 2 1 2 1 1 1 3 样例输出 0 3 题解 单调栈+可持久化线段树 本题是 bzoj4826 的弱化版(我为什么做题总喜欢先挑难的做QAQ) $k$ ...
- [BZOJ4826] [HNOI2017] 影魔 单调栈 主席树
题面 因为是一个排列,所以不会有重复的.如果有重复就没法做了.一开始没有仔细看题目想了半天. 发现,如果是第一种情况,那么边界\(l\)和\(r\)就应该分别是整个区间的最大值和次大值. 然后,对于那 ...
- 【BZOJ4826】[Hnoi2017]影魔 单调栈+扫描线
[BZOJ4826][Hnoi2017]影魔 Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝 ...
- BZOJ 4826: [Hnoi2017]影魔 单调栈 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4826 年少不知空间贵,相顾mle空流泪. 和上一道主席树求的东西差不多,求两种对 1. max(a ...
- [BZOJ4826][HNOI2017]影魔 可持久化线段树
链接 题意:给你 \(1\) 到 \(n\) 的排列 \(k_1,k_2,\dots,k_n\) ,对 \(i,j (i<j)\)来说,若不存在 \(k_s (i<s<j)\) 大于 ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...
- Uoj #218. 【UNR #1】火车管理 可持久化线段树+思维
Code: #include<bits/stdc++.h> #define maxn 500005 using namespace std; int n,Q,ty,lastans=0; i ...
随机推荐
- uvm_void 寂静的空宇
空也是一种存在. ——<三体> 文件: $UVM_HOME/src/base/uvm_misc.svh virtual class uvm_void; endclass 在静寂 ...
- 使用 Azure 创建网络文件系统
本快速入门介绍了如何使用 Azure 文件存储实现网络文件共享.在本教程中完成的所有操作均符合 1 元试用条件. 本快速入门介绍了如何使用 Azure 文件存储实现网络文件共享.在本教程中完成的所有操 ...
- perl在linux下通过date获取当前时间
perl处理文件的时候最好添加上 处理的时间戳,获取系统的时间又多种方法,但是反引号是最原始的,不需要其他外界条件和lib的支持. my $now = `date "+%F %T" ...
- php随机生成国内ip地址
获得一个国家所有ip段,随机生成国内ip地址的缩水实现.注意: $ip_long数组中后5个值在64位系统中可能是错误的(下面代码中 $ip_long 数组的后五个值在32位系统中为负数,64位系 ...
- Chrome浏览器扩展程序的本地备份
由于众所周知的原因,有些朋友可能很难在线下载Chrome扩展程序.一种选择是可以让朋友把他成功安装的Chrome扩展程序导出成本地文件,然后让朋友发送给自己,在自己本地电脑上报这些本地文件直接拖到Ch ...
- 添加 SSH 公钥
生成 SSH 密钥 ssh-keygen -t rsa -C "YOUR_EMAIL@YOUREMAIL.COM" 获取 SSH 公钥信息 cat ~/.ssh/id_rsa.pu ...
- selenium+chrome浏览器驱动-爬取百度图片
百度图片网页中中,当页面滚动到底部,页面会加载新的内容. 我们通过selenium和谷歌浏览器驱动,执行js,是浏览器不断加载页面,通过抓取页面的图片路径来下载图片. from selenium im ...
- APPScan-简单操作流程
图解安全扫描工具 AppScan使用 IBM Rational AppScan 是一个面向 Web 应用安全检测的自动化工具,使用它可以自动化检测 Web 应用的安全漏洞. 比如跨站点脚本攻击(C ...
- 前端知识点总结——HTML
HTML:HTML4.01 指的就是网页技术HTML5:HTML4.01的升级版本 1.web的基础知识 web与Internet1.Internet:全球性的计算机互联网络,因特网,互联网,交互网2 ...
- Java中的线程--线程中的工具
这主要想写一下Java中的jdk提供的一些线程中的工具, 一.semaphore信号灯 Semaphore可以维护当前访问自身的线程个数,并提供了同步机制,使用Semaphore可以控制同时访问资源的 ...