BSGS算法 (小步大步 Baby Step Gaint Step)
当你要求满足:
$$ A^x \equiv B \ (\bmod \ P) $$
的最小非负整数 x (gcd(A,P)==1)就可以用到 BSGS 了
设 $ m=\sqrt{P} $ 向上取整
处理一下那个式子:
$$ A^{i \times m-j} \equiv B \ (\bmod \ P) $$
$$ A^{i \times m} \equiv B \times A^j \ (\bmod \ P) $$
枚举 j(0到m),将 B*A^j 存入hash表里面
枚举 i(1到m),从hash表中找第一个满足上面这条式子的 j
x=i*m-j 即为所求 (感性理解)
模板题: 【xsy 1754】 离散对数
Description
给定B,N,P,求最小的满足B^L=N(mod P)的非负正数L。保证gcd(B,P)=1。
Input
Output
CODE:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<unordered_map>
using namespace std; int p,a,b; int qpow(int x,int y){
int ans=;
while(y){
if(y&)ans=1LL*ans*x%p;
y>>=,x=1LL*x*x%p;
}
return ans;
} int BSGS(){
unordered_map<int,int> mp;
int m=ceil(sqrt(p)),tmp;
tmp=b;
for(int j=;j<=m;j++)
mp[tmp]=j,tmp=1LL*tmp*a%p;
tmp=a=qpow(a,m);
for(int i=;i<=m;i++){
if(mp.count(tmp))
return i*m-mp[tmp];
tmp=1LL*tmp*a%p;
}
return -;
} int main(){
while(~scanf("%d%d%d",&p,&a,&b)){
int ans=BSGS();
if(~ans)printf("%d\n",ans);
else printf("no solution\n");
}
}
证明:
有这样一条式子:
证明了这个就搞定了
处理一下这个式子:
手头上的条件:gcd(A,P)=1
欧拉定理:
证完了OvO
BSGS算法 (小步大步 Baby Step Gaint Step)的更多相关文章
- Baby Step Gaint Step
给定同余式,求它在内的所有解,其中总是素数. 分析:解本同余式的步骤如下 (1)求模的一个原根 (2)利用Baby Step Giant Step求出一个,使得,因为为素数,所以有唯一解. (3)设, ...
- BSGS算法初探
前言 \(BSGS\)算法,全称\(Baby\ Step\ Giant\ Step\),即大小步算法.某些奆佬也称其为拔(Ba)山(Shan)盖(Gai)世(Shi)算法. 它的主要作用是求解形式如\ ...
- luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法
BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. ...
- 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...
- 『高次同余方程 Baby Step Giant Step算法』
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...
- 【学习笔记】Baby Step Giant Step算法及其扩展
1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...
- POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...
- 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝 扩展Baby Step Gian ...
- HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法
联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...
随机推荐
- github上不了改下host
207.97.227.239 github.com 65.74.177.129 www.github.com 207.97.227.252 nodeload.github.com 207.97.227 ...
- (九)mybatis之生命周期
生命周期 SqlSessionFactoryBuilder SqlSessionFactoryBuilder的作用就是生成SqlSessionFactory对象,是一个构建器.所以我们一旦构建 ...
- (十)maven之排除冲突jar包
排除冲突jar包 jar包冲突 <dependencies> <dependency> <groupId>org.springframework</group ...
- 虚拟机ubuntu16.0 安装 mysql 主机配置访问
在bantu服务器中安装如下命令 sudo apt-get install mysql-server sudo apt-get install mysql-client安装成功之后 进入配置文件 ...
- CAD命令标志
CAD命令标志 主标识:(常用的)ACRX_CMD_MODAL 在别的命令执行的时候该命令不会在其中执行.ACRX_CMD_TRANSPARENT 命令可以再其它命令中执行,但在该标志下ads_sss ...
- python基础一 day11 装饰器复习
# 复习# 讲作业# 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数# 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 # 装 ...
- [BZOJ3631]:[JLOI2014]松鼠的新家(LCA+树上差分)
题目传送门 题目描述: 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
- java第十次作业:oop的第6张图片到第11张图片
- NSLayoutConstraint.constraintsWithVisualFormat详解,以及AlignAllCenterY
NSLayoutConstraint.constraintsWithVisualFormat详解,以及AlignAllCenterY 转载2015-07-08 18:02:02 鉴于苹果官方文档的解释 ...
- ECshop二次开发 ECSHOP首页显示积分商城里的商品
以ECSHOP2.7.2官方默认模板为基础 1).首先打开 index.php 文件,在最末尾增加下面函数,注意千万不要写到 “?>” 的外面去,要加在“?>”的前面,加以下代码: /** ...