CF 429B B.Working out (四角dp)
题意:
两个人一个从左上角一个从左下角分别开始走分别走向右下角和右上角,(矩阵每个格子有数)问到达终点后可以得到的最大数是多少,并且条件是他们两个相遇的时候那个点的数不能算
思路:
首先这道题如果暴力搜索一般是gg了,所以考虑动态规划
我们设起点为st(1,1),终点为ed(n,m),相遇的点为now(i,j)
问题转化为计算st→now + now→ed的值(不包含now)
这个问题可以分解为求st→now和now→ed的值,st→now = dp[st][now],那么now→ed怎么求呢
可以反过来思考,now→ed其实就是ed→now的值,反向dp即可
还有个很重要的问题
在相遇的时候,即在点now时,每条路径只能走相对的边,如图

如果走的是临边,效果可能不一样,可以试试。。。
代码:
#include<iostream>
#include<cstring>
#define max(a, b) ((a)>(b)?(a):(b))
using namespace std;
typedef long long ll;
const int maxn = 1010;
int mp[maxn][maxn];
int dp1[maxn][maxn],dp2[maxn][maxn],dp3[maxn][maxn],dp4[maxn][maxn];
int main() {
memset(dp1, 0, sizeof dp1);
memset(dp2, 0, sizeof dp2);
memset(dp3, 0, sizeof dp3);
memset(dp4, 0, sizeof dp4);
int n,m;
scanf("%d %d", &n,&m);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
scanf("%d", &mp[i][j]);
}
}
//从右下 走
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
dp1[i][j] = max(dp1[i-1][j], dp1[i][j-1]) + mp[i][j];//到点(i,j)有两种方法,以下如此
}
}
//从左上 走
for(int i = n; i >= 1; i--) {
for(int j = m; j >= 1; j--) {
dp2[i][j] = max(dp2[i+1][j], dp2[i][j+1]) + mp[i][j];
}
}
//从右上 走
for(int i = n; i >= 1; i--) {
for(int j = 1; j <= m; j++) {
dp3[i][j] = max(dp3[i+1][j], dp3[i][j-1]) + mp[i][j];
}
}
//从左下 走
for(int i = 1; i <= n; i++) {
for(int j = m; j >= 1; j--) {
dp4[i][j] = max(dp4[i-1][j], dp4[i][j+1]) + mp[i][j];
}
}
ll ans = -1;
for(int i = 2; i < n; i++) {
for(int j = 2; j < m; j++) {
ans = max(dp1[i-1][j] + dp2[i+1][j] + dp3[i][j-1] + dp4[i][j+1], ans);
ans = max(dp1[i][j-1] + dp2[i][j+1] + dp3[i+1][j] + dp4[i-1][j], ans);
//把横向穿过和纵向穿过,两者进行枚举
}
}
printf("%d\n", ans);
return 0;
}
CF 429B B.Working out (四角dp)的更多相关文章
- cf 429B Working out(简单dp)
B. Working out time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- B. Working out 四角dp
https://codeforces.com/problemset/problem/429/B 这个题目之前写过,不过好像..忘记了,今天又没有写出来,应该之前没有想明白... 这个应该算一个四角dp ...
- CF #374 (Div. 2) C. Journey dp
1.CF #374 (Div. 2) C. Journey 2.总结:好题,这一道题,WA,MLE,TLE,RE,各种姿势都来了一遍.. 3.题意:有向无环图,找出第1个点到第n个点的一条路径 ...
- CF 372B Counting Rectangles is Fun [dp+数据维护]
题意,给出一个n行m列的矩阵 里面元素是0或者1 给出q个询问 a,b,c,d 求(a,b)到(c,d)有多少个由0组成的矩形 我们定义 watermark/2/text/aHR0cDovL2Jsb2 ...
- CF EDU 1101D GCD Counting 树形DP + 质因子分解
CF EDU 1101D GCD Counting 题意 有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1. 思路 由于每个数的质因子很少,题目的数据200000&l ...
- CF 407B Long Path[观察性质 DP]
B. Long Path time limit per test 1 second memory limit per test 256 megabytes input standard input o ...
- cf.301.D. Bad Luck Island(dp + probabilities)
D. Bad Luck Island time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CF 337D Book of Evil 树形DP 好题
Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains n se ...
- CF 461B Appleman and Tree 树形DP
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...
随机推荐
- spring boot-启动及配置文件
spring boot启动: 1:默认启动方法 public static void main(String[] args) { SpringApplication.run(UserServiceAp ...
- Linux ALSA声卡驱动之一:ALSA架构简介【转】
本文转载自:http://blog.csdn.net/droidphone/article/details/6271122 声明:本博内容均由http://blog.csdn.net/droidpho ...
- 理解dropout——本质是通过阻止特征检测器的共同作用来防止过拟合 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/torna ...
- android 制作9.png图片
什么叫.9.PNG呢,这是安卓开发里面的一种特殊的图片 这种格式的图片在android 环境下具有自适应调节大小的能力. (1)允许开发人员定义可扩展区域,当需要延伸图片以填充比图片本身更大区 ...
- poj 3683(2-sat+拓扑排序)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11127 Accep ...
- luogu 3952 时间复杂度
noip2017 D1T2 时间复杂度 某zz选手考场上写了1.5h 考完之后发现自己写的是错的 但是结果A了??? 题目大意: 一种新的编程语言 A++ 给出一个程序只有循环语句 并给出这个程序的时 ...
- bzoj 4719: [Noip2016]天天爱跑步【树上差分+dfs】
长久以来的心理阴影?但是其实非常简单-- 预处理出deep和每组st的lca,在这里我简单粗暴的拿树剖爆算了 然后考虑对于一组s t lca来说,被这组贡献的观察员x当且仅当: x在s到lca的路径上 ...
- bzoj 1671: [Usaco2005 Dec]Knights of Ni 骑士【bfs】
bfs预处理出每个点s和t的距离d1和d2(无法到达标为inf),然后在若干灌木丛格子(x,y)里取min(d1[x][y]+d2[x][y]) /* 0:贝茜可以通过的空地 1:由于各种原因而不可通 ...
- UVa 101 - The Blocks Problem STL
题目:给你n个方块,有四种操作: .move a onto b,把a和b上面的方块都放回原来位置,然后把a放到b上面: .move a over b,把a上面的放回原处,然后把a放在b所在的方块堆的上 ...
- selenium-server 启动命令
启动hub主机: java -jar selenium-server-standalone-2.39.0.jar -role hub 启动node 本地:java -jar selenium-serv ...