Rikka with Phi 线段树
There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:
1. "C A B C" Color the board from segment A to segment B with color C.
2. "P A B" Output the number of different colors painted between segment A and segment B (including).
In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.
Input
Output
Sample Input
2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2
Sample Output
2
1
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 1e7 + ;
const int N = 3e5 + ;
LL euler[MAXN];
void geteuler()
{
memset(euler, , sizeof(euler));
euler[] = ;
for (LL i = ; i < MAXN; i++)
{
if (!euler[i])
for (LL j = i; j < MAXN; j += i)
{
if (!euler[j]) euler[j] = j;
euler[j] = euler[j] / i * (i - );
}
}
}
struct node
{
int l, r;
LL sum, laz;
}T[N * + ];
LL a[N];
void pushup(int p)
{
T[p].sum = T[p * ].sum + T[p * + ].sum;
if (T[p * ].laz == T[p * + ].laz)
T[p].laz = T[p * ].laz;
else
T[p].laz = ;
}
void pushdown(int p)
{
if (T[p].laz)
{
T[p * ].laz = T[p * + ].laz = T[p].laz;
T[p * ].sum = T[p].laz * (T[p * ].r - T[p * ].l + );
T[p * + ].sum = T[p].laz * (T[p * + ].r - T[p * + ].l + );
}
}
void update1(int x, int l, int r)
{
if (T[x].laz&&T[x].l == l&&T[x].r == r)
{
T[x].laz = euler[T[x].laz];
T[x].sum = T[x].laz * (T[x].r - T[x].l + );
return;
}
pushdown(x);
int mid = (T[x].l + T[x].r) / ;
if (r <= mid)
update1(x * , l, r);
else if(l > mid)
update1(x * + , l , r);
else
{
update1(x * , l, mid);
update1(x * + , mid + , r);
}
pushup(x);
}
void update2(int x, int l, int r, LL val)
{
if (l == T[x].l&&r == T[x].r)
{
T[x].laz = val;
T[x].sum = (T[x].r - T[x].l + )*T[x].laz;
return;
}
pushdown(x);
int mid = (T[x].l + T[x].r) / ;
if (r <= mid)
update2(x * , l, r, val);
else if (l > mid)
update2(x * + , l, r, val);
else
{
update2(x * , l, mid, val);
update2(x * + , mid + , r, val);
}
pushup(x);
} void build(int x, int l, int r)
{
T[x].l = l, T[x].r = r;
T[x].laz = T[x].sum = ;
if (l == r)
{
T[x].laz = T[x].sum = a[l];
return;
}
int mid = (l + r) / ;
build(x * , l, mid);
build(x * + , mid + , r);
pushup(x);
} LL query(int x, int l, int r)
{
if (T[x].l == l&&T[x].r == r)
return T[x].sum;
int mid = (T[x].l + T[x].r) / ;
pushdown(x);
if (r <= mid)
return query(x * , l, r);
else if (l > mid)
return query(x * + , l, r);
else
return query(x * , l, mid) + query(x * + , mid + , r);
}
int t, n, m;
int main()
{
geteuler();
ios::sync_with_stdio();
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)
scanf("%lld", &a[i]);
build(, , n);
int op, L, R;
LL tmp;
while (m--)
{
scanf("%d%d%d", &op, &L, &R);
if (op == )
{
update1(, L, R);
}
else if (op == )
{
scanf("%lld", &tmp);
update2(, L, R, tmp);
}
else if (op == )
{
printf("%lld\n", query(, L, R));
}
}
}
}
Count Color
修改节点的值,查询区间总和
这里laz就表示当前区间元素是否相同 pushdown 顺推
pushup
只有当左右两边都是整块而且左右边的颜色相等才能设置laz =
这里多了一个左右都是整块的条件是因为在欧拉的题目中laz>0就表示是整块了 Rikka with Phi
laz有两个含义:laz== 表示当前区间多个元素值不同
laz == x 表示当前区间元素的值都是x
修改节点的值,查询区间总和
pushdown
顺推即可,laz 相同, sum计算一下
pushup
当前sum = 子区间sum之和
当前laz = 子区间laz 相同? 子区间laz,否则为0 分为块状区域统一处理,当处理比当前块更小的块的时候,把之前积累的信息传递下去,递归处理 两个题的区别在于颜色的题目不需要Laz来表示当前值,当前值用color表示即可 PUSHDOWN
更新结点数据
PUSHUP
根据结点更新当前点的数据
Rikka with Phi 线段树的更多相关文章
- HDU5634 Rikka with Phi 线段树
// HDU5634 Rikka with Phi 线段树 // 思路:操作1的时候,判断一下当前区间是不是每个数都相等,在每个数相等的区间上操作.相当于lazy,不必更新到底. #include & ...
- HDU 5634 Rikka with Phi 线段树
题意:bc round 73 div1 D 中文题面 分析:注意到10^7之内的数最多phi O(log(n))次就会变成1, 因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护. 每次求p ...
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- hdu 5828 Rikka with Sequence 线段树
Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...
- HDU 6089 Rikka with Terrorist (线段树)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...
- Rikka with Mista 线段树求交点个数
由于上下线段是不可能有交点的 可以先看左右线段树,按照y递增的顺序,对点进行排序. 升序构造,那么对于从某一点往下的射线,对于L,R进行区间覆盖,线段交点个数就是单点的被覆盖的次数. 降序构造,那么对 ...
- HDU5828 Rikka with Sequence 线段树
分析:这个题和bc round 73应该是差不多的题,当时是zimpha巨出的,那个是取phi,这个是开根 吐槽:赛场上写的时候直接维护数值相同的区间,然后1A,结果赛后糖教一组数据给hack了,仰慕 ...
- HDU 5828 Rikka with Sequence(线段树区间加开根求和)
Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...
- 牛客多校第十场 A Rikka with Lowbit 线段树
链接:https://www.nowcoder.com/acm/contest/148/A来源:牛客网 题目描述 Today, Rikka is going to learn how to use B ...
随机推荐
- Fragment懒加载预加载
1. 预加载viewpager.setOffscreenPageLimit(2);,默认是预加载1,可以结合懒加载使用. 如果希望进入viewpager,Fragment只加载一次,再次滑动不需加载( ...
- Quartz2D知识点聚合案例
Quartz2D知识点聚合 基本 //画图片 UIImage *image = [UIImage imageNamed:@"阿狸头像"]; [image drawInRect:re ...
- sql发送邮件- html 格式
ALTER PROCEDURE dbo.sx_pro_AutoEmailContent AS Begin declare @Rqty int declare @n int declare @m_rec ...
- JavaScript——responseType
https://www.cnblogs.com/cdemo/p/5225848.html https://blog.csdn.net/wkyseo/article/details/78232485 异 ...
- swiper移动端下不能正常轮播的解决方案-----此坑没躺过估计很难找到正确姿势
<script> var mySwiper = new Swiper('.swiper-container', { direction: 'vertical', //horizontal横 ...
- swift -Dynamic Dispatch
These instructions perform dynamic lookup of class and generic methods. The class_method and super_m ...
- MySql(一)mysql服务的基本操作及环境配置
MySQL服务的启动开始–>计算机–>右键选择管理–>双击打开服务和应用程序–>双击服务–>找到MySQL的服务名称(我的是MySQL56),右键选择启动即可 通过命令行 ...
- 使用nsight调试caffe
首先你需要下载caffe源码,然后先编译好,注意一定要将Makefile.config里的DEBUG := 1注释掉 可以看到注释掉debug后编译会生成的.build_debug目录,调试过程中需要 ...
- R-FCN:Object Detection via Region-based Fully Convolutional Networks
fast.faster这些网络都可以被roi-pooling层分成两个子网络:1.a shared,'fully convolutional' subnetwork 2.an roi-wise sub ...
- webstorm 设置ES6语法支持以及添加vuejs开发配置
参考文章:https://blog.csdn.net/diligentkong/article/details/75040651