Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem.

There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:

1. "C A B C" Color the board from segment A to segment B with color C. 
2. "P A B" Output the number of different colors painted between segment A and segment B (including).

In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.

Input

First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

Output

Ouput results of the output operation in order, each line contains a number.

Sample Input

2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2

Sample Output

2
1
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 1e7 + ;
const int N = 3e5 + ;
LL euler[MAXN];
void geteuler()
{
memset(euler, , sizeof(euler));
euler[] = ;
for (LL i = ; i < MAXN; i++)
{
if (!euler[i])
for (LL j = i; j < MAXN; j += i)
{
if (!euler[j]) euler[j] = j;
euler[j] = euler[j] / i * (i - );
}
}
}
struct node
{
int l, r;
LL sum, laz;
}T[N * + ];
LL a[N];
void pushup(int p)
{
T[p].sum = T[p * ].sum + T[p * + ].sum;
if (T[p * ].laz == T[p * + ].laz)
T[p].laz = T[p * ].laz;
else
T[p].laz = ;
}
void pushdown(int p)
{
if (T[p].laz)
{
T[p * ].laz = T[p * + ].laz = T[p].laz;
T[p * ].sum = T[p].laz * (T[p * ].r - T[p * ].l + );
T[p * + ].sum = T[p].laz * (T[p * + ].r - T[p * + ].l + );
}
}
void update1(int x, int l, int r)
{
if (T[x].laz&&T[x].l == l&&T[x].r == r)
{
T[x].laz = euler[T[x].laz];
T[x].sum = T[x].laz * (T[x].r - T[x].l + );
return;
}
pushdown(x);
int mid = (T[x].l + T[x].r) / ;
if (r <= mid)
update1(x * , l, r);
else if(l > mid)
update1(x * + , l , r);
else
{
update1(x * , l, mid);
update1(x * + , mid + , r);
}
pushup(x);
}
void update2(int x, int l, int r, LL val)
{
if (l == T[x].l&&r == T[x].r)
{
T[x].laz = val;
T[x].sum = (T[x].r - T[x].l + )*T[x].laz;
return;
}
pushdown(x);
int mid = (T[x].l + T[x].r) / ;
if (r <= mid)
update2(x * , l, r, val);
else if (l > mid)
update2(x * + , l, r, val);
else
{
update2(x * , l, mid, val);
update2(x * + , mid + , r, val);
}
pushup(x);
} void build(int x, int l, int r)
{
T[x].l = l, T[x].r = r;
T[x].laz = T[x].sum = ;
if (l == r)
{
T[x].laz = T[x].sum = a[l];
return;
}
int mid = (l + r) / ;
build(x * , l, mid);
build(x * + , mid + , r);
pushup(x);
} LL query(int x, int l, int r)
{
if (T[x].l == l&&T[x].r == r)
return T[x].sum;
int mid = (T[x].l + T[x].r) / ;
pushdown(x);
if (r <= mid)
return query(x * , l, r);
else if (l > mid)
return query(x * + , l, r);
else
return query(x * , l, mid) + query(x * + , mid + , r);
}
int t, n, m;
int main()
{
geteuler();
ios::sync_with_stdio();
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)
scanf("%lld", &a[i]);
build(, , n);
int op, L, R;
LL tmp;
while (m--)
{
scanf("%d%d%d", &op, &L, &R);
if (op == )
{
update1(, L, R);
}
else if (op == )
{
scanf("%lld", &tmp);
update2(, L, R, tmp);
}
else if (op == )
{
printf("%lld\n", query(, L, R));
}
}
}
}

Count Color

 
修改节点的值,查询区间总和
这里laz就表示当前区间元素是否相同 pushdown 顺推
pushup
只有当左右两边都是整块而且左右边的颜色相等才能设置laz =
这里多了一个左右都是整块的条件是因为在欧拉的题目中laz>0就表示是整块了 Rikka with Phi 
laz有两个含义:laz== 表示当前区间多个元素值不同
laz == x 表示当前区间元素的值都是x
修改节点的值,查询区间总和
pushdown
顺推即可,laz 相同, sum计算一下
pushup
当前sum = 子区间sum之和
当前laz = 子区间laz 相同? 子区间laz,否则为0 分为块状区域统一处理,当处理比当前块更小的块的时候,把之前积累的信息传递下去,递归处理 两个题的区别在于颜色的题目不需要Laz来表示当前值,当前值用color表示即可 PUSHDOWN
更新结点数据
PUSHUP
根据结点更新当前点的数据

Rikka with Phi 线段树的更多相关文章

  1. HDU5634 Rikka with Phi 线段树

    // HDU5634 Rikka with Phi 线段树 // 思路:操作1的时候,判断一下当前区间是不是每个数都相等,在每个数相等的区间上操作.相当于lazy,不必更新到底. #include & ...

  2. HDU 5634 Rikka with Phi 线段树

    题意:bc round 73 div1 D 中文题面 分析:注意到10^7之内的数最多phi O(log(n))次就会变成1, 因此可以考虑把一段相同的不为1的数缩成一个点,用平衡树来维护. 每次求p ...

  3. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  4. hdu 5828 Rikka with Sequence 线段树

    Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  5. HDU 6089 Rikka with Terrorist (线段树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6089 题解 这波强行维护搞得我很懵逼... 扫描线,只考虑每个点能走到左上方(不包括正上方,但包括正左 ...

  6. Rikka with Mista 线段树求交点个数

    由于上下线段是不可能有交点的 可以先看左右线段树,按照y递增的顺序,对点进行排序. 升序构造,那么对于从某一点往下的射线,对于L,R进行区间覆盖,线段交点个数就是单点的被覆盖的次数. 降序构造,那么对 ...

  7. HDU5828 Rikka with Sequence 线段树

    分析:这个题和bc round 73应该是差不多的题,当时是zimpha巨出的,那个是取phi,这个是开根 吐槽:赛场上写的时候直接维护数值相同的区间,然后1A,结果赛后糖教一组数据给hack了,仰慕 ...

  8. HDU 5828 Rikka with Sequence(线段树区间加开根求和)

    Problem DescriptionAs we know, Rikka is poor at math. Yuta is worrying about this situation, so he g ...

  9. 牛客多校第十场 A Rikka with Lowbit 线段树

    链接:https://www.nowcoder.com/acm/contest/148/A来源:牛客网 题目描述 Today, Rikka is going to learn how to use B ...

随机推荐

  1. php中除法取整的方法(round,ceil,floor)

    PHP中遇到需要将除法所得结果取整的情况时,就需要用到以下方法: 1. round:四舍五入 round() 函数对浮点数进行四舍五入. 语法:round(x, prec) 参数 描述 x 可选.规定 ...

  2. 策略模式--Java篇

    策略模式(Strategy):它定义了算法家族,分别封装起来,让他们之间可以互相替换,此模式让算法的变化,不会影响到使用算法的客户. 下面将以商场打折为例子,说明策略模式.商场收银如何促销,用打折还是 ...

  3. WP7 开发资料

    前言 离Windows Phone 7正式发布已过去几个月了,但国内关于Windows Phone 7的中文书籍资料太少了,大多数是英文资料,一本真正的中文开发教程书都没有, 要啃英文资料对大部分的开 ...

  4. RFTWEB测试对象抓取的方法

    本文转自:http://feiyeguohai.iteye.com/blog/1468576 Rational Functional Tester (RFT) 作为 IBM 自己设计研发的自动化测试工 ...

  5. iOS---开发实用传感器

    传感器 1.什么是传感器 传感器是一种感应\检测装置, 目前已经广泛应用于智能手机上 2.传感器的作用 用于感应\检测设备周边的信息 不同类型的传感器, 检测的信息也不一样 iPhone中的下面现象都 ...

  6. Python界面编程之六----布局

    布局(转载于–学点编程吧)通过实践可知采用了布局之后能够让我们的程序在使用上更加美观,不会随着窗体的大小发生改变而改变,符合我们的使用习惯. 绝对位置程序员以像素为单位指定每个小部件的位置和大小. 当 ...

  7. js 零散知识

    # 同一种类型的事件注册多个事件句柄,后面的不会覆盖前面的事件 # event.which == 13,13代表回车 # parsley.js验证框架 # JSON.stringify, avoid ...

  8. automount - 配置autofs的挂载点

    命令概要(SYNOPSIS) automount [options] mount-point map-type[,format] map [map-options] 描述(DESCRIPTION) a ...

  9. Flask框架 之数据库扩展Flask-SQLAlchemy

    一.安装扩展 pip install flask-sqlalchemy pip install flask-mysqldb 二.SQLAlchemy 常用的SQLAlchemy字段类型 类型名 pyt ...

  10. Asp.Net MVC中Controller、Action、View是如何激活调用的

    上篇我们介绍了MVC的路由,知道在注册路由的时候会创建一个MvcHandler将其和Url规则一起放入到了RouteCollection中,之后请求通过UrlRoutingModule,根据当前的UR ...