1 配置

1.1 开发环境:

  • HBase:hbase-1.0.0-cdh5.4.5.tar.gz
  • Hadoop:hadoop-2.6.0-cdh5.4.5.tar.gz
  • ZooKeeper:zookeeper-3.4.5-cdh5.4.5.tar.gz
  • Spark:spark-2.1.0-bin-hadoop2.6

1.2 Spark的配置

  • Jar包:需要HBase的Jar如下(经过测试,正常运行,但是是否存在冗余的Jar并未证实,若发现多余的jar可自行进行删除)

  • spark-env.sh
    添加以下配置:export SPARK_CLASSPATH=/home/hadoop/data/lib1/*
    注:如果使用spark-shell的yarn模式进行测试的话,那么最好每个NodeManager节点都有配置jars和hbase-site.xml
  • spark-default.sh
spark.yarn.historyServer.address=slave11:18080
spark.history.ui.port=18080
spark.eventLog.enabled=true
spark.eventLog.dir=hdfs:///tmp/spark/events
spark.history.fs.logDirectory=hdfs:///tmp/spark/events
spark.driver.memory=1g
spark.serializer=org.apache.spark.serializer.KryoSerializer

1.3 数据

1)格式: barCode@item@value@standardValue@upperLimit@lowerLimit

01055HAXMTXG10100001@KEY_VOLTAGE_TEC_PWR@1.60@1.62@1.75@1.55
01055HAXMTXG10100001@KEY_VOLTAGE_T_C_PWR@1.22@1.24@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_T_BC_PWR@1.16@1.25@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_11@1.32@1.25@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_T_RC_PWR@1.24@1.25@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_T_VCC_5V@1.93@1.90@1.95@1.65
01055HAXMTXG10100001@KEY_VOLTAGE_T_VDD3V3@1.59@1.62@1.75@1.55

2 代码演示

2.1 准备动作

1)既然是与HBase相关,那么首先需要使用hbase shell来创建一个表

创建表格:create ‘data’,’v’,create ‘data1’,’v’

2)使用spark-shell进行操作,命令如下:

bin/spark-shell --master yarn --deploy-mode client --num-executors 5 --executor-memory 1g --executor-cores 2

3)import 各种类

import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.client.Scan
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.protobuf.ProtobufUtil
import org.apache.hadoop.hbase.util.{Base64,Bytes}
import org.apache.hadoop.hbase.KeyValue
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.commons.codec.digest.DigestUtils

2.2 代码实战

创建conf和table

val conf= HBaseConfiguration.create()
conf.set(TableInputFormat.INPUT_TABLE,"data1")
val table = new HTable(conf,"data1")

2.2.1 数据写入

格式:

val put = new Put(Bytes.toBytes("rowKey"))
put.add("cf","q","value")

使用for来插入5条数据

for(i <- 1 to 5){ var put= new Put(Bytes.toBytes("row"+i));put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes("value"+i));table.put(put)}

到hbase shell中查看结果

2.2.2 数据读取

val hbaseRdd = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],classOf[org.apache.hadoop.hbase.client.Result])

1)take

hbaseRdd take 1

2)scan

var scan = new Scan();
scan.addFamily(Bytes.toBytes(“v”));
var proto = ProtobufUtil.toScan(scan)
var scanToString = Base64.encodeBytes(proto.toByteArray());
conf.set(TableInputFormat.SCAN,scanToString) val datas = hbaseRdd.map( x=>x._2).map{result => (result.getRow,result.getValue(Bytes.toBytes("v"),Bytes.toBytes("value")))}.map(row => (new String(row._1),new String(row._2))).collect.foreach(r => (println(r._1+":"+r._2)))

2.3 批量插入

2.3.1 普通插入

1)代码

val rdd = sc.textFile("/data/produce/2015/2015-03-01.log")
val data = rdd.map(_.split("@")).map{x=>(x(0)+x(1),x(2))}
val result = data.foreachPartition{x => {val conf= HBaseConfiguration.create();conf.set(TableInputFormat.INPUT_TABLE,"data");conf.set("hbase.zookeeper.quorum","slave5,slave6,slave7");conf.set("hbase.zookeeper.property.clientPort","2181");conf.addResource("/home/hadoop/data/lib/hbase-site.xml");val table = new HTable(conf,"data");table.setAutoFlush(false,false);table.setWriteBufferSize(3*1024*1024); x.foreach{y => {
var put= new Put(Bytes.toBytes(y._1));put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(y._2));table.put(put)};table.flushCommits}}}

2)执行时间如下:7.6 min

2.3.2 Bulkload

1) 代码:

val conf = HBaseConfiguration.create();
val tableName = "data1"
val table = new HTable(conf,tableName)
conf.set(TableOutputFormat.OUTPUT_TABLE,tableName) lazy val job = Job.getInstance(conf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[KeyValue])
HFileOutputFormat.configureIncrementalLoad(job,table) val rdd = sc.textFile("/data/produce/2015/2015-03-01.log").map(_.split("@")).map{x => (DigestUtils.md5Hex(x(0)+x(1)).substring(0,3)+x(0)+x(1),x(2))}.sortBy(x =>x._1).map{x=>{val kv:KeyValue = new KeyValue(Bytes.toBytes(x._1),Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(x._2+""));(new ImmutableBytesWritable(kv.getKey),kv)}} rdd.saveAsNewAPIHadoopFile("/tmp/data1",classOf[ImmutableBytesWritable],classOf[KeyValue],classOf[HFileOutputFormat],job.getConfiguration())
val bulkLoader = new LoadIncrementalHFiles(conf)
bulkLoader.doBulkLoad(new Path("/tmp/data1"),table)

2) 执行时间:7s


3)执行结果:
到hbase shell 中查看 list “data1”

通过对比我们可以发现bulkload批量导入所用时间远远少于普通导入,速度提升了60多倍,当然我没有使用更大的数据量测试,但是我相信导入速度的提升是非常显著的,强烈建议使用BulkLoad批量导入数据到HBase中。

spark hbase的更多相关文章

  1. java+hadoop+spark+hbase+scala+kafka+zookeeper配置环境变量记录备忘

    java+hadoop+spark+hbase+scala 在/etc/profile 下面加上如下环境变量 export JAVA_HOME=/usr/java/jdk1.8.0_102 expor ...

  2. zookeeper笔记--配置以及和spark hbase结合使用

    Spark集群基于ZooKeeper的搭建:http://www.dataguru.cn/thread-333245-1-1.html Spark需要修改的地方: 进入spark的配置目录,参照下面代 ...

  3. 基本环境安装: Centos7+Java+Hadoop+Spark+HBase+ES+Azkaban

    1.  安装VM14的方法在 人工智能标签中的<跨平台踩的大坑有提到> 2. CentOS分区设置: /boot:1024M,标准分区格式创建. swap:4096M,标准分区格式创建. ...

  4. Hadoop+Spark+Hbase部署整合篇

    之前的几篇博客中记录的Hadoop.Spark和Hbase部署过程虽然看起来是没多大问题,但是之后在上面跑任务的时候出现了各种各样的配置问题.庆幸有将问题记录下来,可以整理出这篇部署整合篇. 确保集群 ...

  5. 大数据相关技术原理资料整理(hdfs, spark, hbase, kafka, zookeeper, redis, hive, flink, k8s, OpenTSDB, InfluxDB, yarn)

    hdfs: hdfs官方文档 深入理解HDFS的架构和原理 https://blog.csdn.net/kezhong_wxl/article/details/76573901 HDFS原理解析(总体 ...

  6. 配置Hadoop,hive,spark,hbase ————待整理

    五一一天在家搭建好了集群,要上班了来不及整理,待下周周末有时间好好整理整理一个完整的搭建hadoop生态圈的集群的系列 若出现license information(license not accep ...

  7. Docker搭建大数据集群 Hadoop Spark HBase Hive Zookeeper Scala

    Docker搭建大数据集群 给出一个完全分布式hadoop+spark集群搭建完整文档,从环境准备(包括机器名,ip映射步骤,ssh免密,Java等)开始,包括zookeeper,hadoop,hiv ...

  8. elasticsearch+spark+hbase 整合

    1.用到的maven依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>sp ...

  9. build hadoop, spark, hbase cluster

    1,something: 1,arc land 506  git branch 507  git status 508  git reset multicloud/qcloud/cluster_man ...

随机推荐

  1. 业务系统中最核心的状态设计,异常 case. (系统设计)

    系统设计几方面 1. 具象: 几个角色 -- 用例 2. 具象: 边界模块 3. 具象: 实体模块 4. 抽象: 详细设计后,抽出公用的部分. 5. Status状态字段的设置和更改 系统设计中最核心 ...

  2. redis 散列学习要点记录

    散列类型键值也是种字典结构,存储了字段和字段值的映射,字段值只能是字符串,不可以是其他类型(redis数据类型都不可嵌套使用其他类型),散列类型键可以有2的32次方减1个字段 散列的命令组  hset ...

  3. python--线程的其他方法

    一 . current_thread的用法 import threading import time from threading import Thread, current_thread def ...

  4. POST一个多部分编码(Multipart-Encoded)的文件

    Requests使得上传多部分编码文件变得很简单: >>> url = 'http://httpbin.org/post' >>> files = {'file': ...

  5. linux 下常见命令

    ===============安装和登陆命令============================================================= Mount: 挂载命令.把存储介 ...

  6. Debian 修改时间时区

    http://blog.51cto.com/zhujiangtao/1554976 第一种图形化方面推荐使用 第二种修改文件的形式 只是在当前的terminal生效 笔者使用的是: debian9.3

  7. 【02】xmind如何修改默认线条设置

    [02]xmind如何修改不同主题的默认线条设置 魔芋:每次都是曲线.更喜欢为直线.因为曲线的路线是不确定的,看起来就显示很凌乱. 用everything搜索defaultStyles.xml     ...

  8. STM32F407 SPI 个人笔记

    概述 SPI ,Serial Peripheral interface,串行外围设备接口 全双工,同步的通信总线,四根线 主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器 ...

  9. mysql无法启动,报错 Can't start server: can't create PID file: No space left on device

    然后看mysql日志文件 出现Can't start server: can't create PID file: No space left on device 这个错误. 提示磁盘空间不足 后用d ...

  10. java编程思想阅读记录

    第五章:初始化与清理 1.构造器确保初始化 构造器采用与类名相同的方法. 创建对象时,将会为对象分配存储空间,并调用相应的构造器.这就确保了在你能操作对象之前,它就已经恰当的被初始化了. 垃圾回收器负 ...